These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 9435066)
21. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. Matsubara M; Urano N; Yamada S; Narutaki A; Fujii M; Kataoka M J Biosci Bioeng; 2016 Oct; 122(4):421-6. PubMed ID: 27072298 [TBL] [Abstract][Full Text] [Related]
22. The roles of diol dehydratase from pdu operon on glycerol catabolism in Klebsiella pneumoniae. Shu L; Wang Q; Jiang W; Tišma M; Oh B; Shi J; Lye GJ; Baganz F; Wei D; Hao J Enzyme Microb Technol; 2022 Jun; 157():110021. PubMed ID: 35231673 [TBL] [Abstract][Full Text] [Related]
23. Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression. Ma Z; Shentu X; Bian Y; Yu X J Basic Microbiol; 2013 Apr; 53(4):348-54. PubMed ID: 22733684 [TBL] [Abstract][Full Text] [Related]
24. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Hartlep M; Hussmann W; Prayitno N; Meynial-Salles I; Zeng AP Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):60-6. PubMed ID: 12382042 [TBL] [Abstract][Full Text] [Related]
25. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. Forage RG; Foster MA J Bacteriol; 1982 Feb; 149(2):413-9. PubMed ID: 7035429 [TBL] [Abstract][Full Text] [Related]
26. Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B₁₂ naturally. Ashok S; Sankaranarayanan M; Ko Y; Jae KE; Ainala SK; Kumar V; Park S Biotechnol Bioeng; 2013 Feb; 110(2):511-24. PubMed ID: 22952017 [TBL] [Abstract][Full Text] [Related]
27. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. Toraya T; Honda S; Fukui S J Bacteriol; 1979 Jul; 139(1):39-47. PubMed ID: 378959 [TBL] [Abstract][Full Text] [Related]
28. Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. Wang Y; Teng H; Xiu Z J Ind Microbiol Biotechnol; 2011 Jun; 38(6):705-15. PubMed ID: 20811802 [TBL] [Abstract][Full Text] [Related]
30. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Hao J; Lin R; Zheng Z; Sun Y; Liu D J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1615-24. PubMed ID: 18685876 [TBL] [Abstract][Full Text] [Related]
31. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. Bobik TA; Xu Y; Jeter RM; Otto KE; Roth JR J Bacteriol; 1997 Nov; 179(21):6633-9. PubMed ID: 9352910 [TBL] [Abstract][Full Text] [Related]
32. 1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090. Przystałowska H; Zeyland J; Kośmider A; Szalata M; Słomski R; Lipiński D Acta Biochim Pol; 2015; 62(3):589-97. PubMed ID: 26345096 [TBL] [Abstract][Full Text] [Related]
33. Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Qi X; Guo Q; Wei Y; Xu H; Huang R Biotechnol Lett; 2012 Feb; 34(2):339-46. PubMed ID: 22042303 [TBL] [Abstract][Full Text] [Related]
34. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. Toraya T; Kuno S; Fukui S J Bacteriol; 1980 Mar; 141(3):1439-42. PubMed ID: 6988416 [TBL] [Abstract][Full Text] [Related]
35. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Ahrens K; Menzel K; Zeng A; Deckwer W Biotechnol Bioeng; 1998 Sep; 59(5):544-52. PubMed ID: 10099370 [TBL] [Abstract][Full Text] [Related]
36. Recombinant glycerol dehydratase from Klebsiella pneumoniae XJPD-Li: induction optimization, purification and characterization. Xu XL; Zhang GL; Lv B; Yuan YJ; Li C Prikl Biokhim Mikrobiol; 2011; 47(2):162-7. PubMed ID: 22808739 [TBL] [Abstract][Full Text] [Related]
37. Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions. Zhao L; Zheng Y; Ma X; Wei D Bioprocess Biosyst Eng; 2009 Apr; 32(3):313-20. PubMed ID: 18682988 [TBL] [Abstract][Full Text] [Related]
38. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Zhu MM; Lawman PD; Cameron DC Biotechnol Prog; 2002; 18(4):694-9. PubMed ID: 12153300 [TBL] [Abstract][Full Text] [Related]
39. Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Seo MY; Seo JW; Heo SY; Baek JO; Rairakhwada D; Oh BR; Seo PS; Choi MH; Kim CH Appl Microbiol Biotechnol; 2009 Sep; 84(3):527-34. PubMed ID: 19352645 [TBL] [Abstract][Full Text] [Related]
40. Cloning and sequence analysis of the dhaT gene of the 1,3-propanediol regulon from Klebsiella pneumoniae. Yuanyuan Z; Yang C; Baishan F Biotechnol Lett; 2004 Feb; 26(3):251-5. PubMed ID: 15049372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]