These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9435067)

  • 1. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria.
    Shim H; Chauhan S; Ryoo D; Bowers K; Thomas SM; Canada KA; Burken JG; Wood TK
    Appl Environ Microbiol; 2000 Nov; 66(11):4673-8. PubMed ID: 11055909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms.
    Krumme ML; Timmis KN; Dwyer DF
    Appl Environ Microbiol; 1993 Aug; 59(8):2746-9. PubMed ID: 7690223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
    Shields MS; Reagin MJ
    Appl Environ Microbiol; 1992 Dec; 58(12):3977-83. PubMed ID: 1282314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4.
    Shields MS; Reagin MJ; Gerger RR; Campbell R; Somerville C
    Appl Environ Microbiol; 1995 Apr; 61(4):1352-6. PubMed ID: 7538275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity and stability of a recombinant plasmid-borne TCE degradative pathway in suspended cultures.
    Sharp RR; Bryers JD; Jones WG; Shields MS
    Biotechnol Bioeng; 1998 Feb; 57(3):287-96. PubMed ID: 10099205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene o-monooxygenase, and gamma-glutamylcysteine synthetase.
    Rui L; Kwon YM; Reardon KF; Wood TK
    Environ Microbiol; 2004 May; 6(5):491-500. PubMed ID: 15049922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 May; 67(5):2107-15. PubMed ID: 11319088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Boot colonization of wheat by lux-AB genes marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):150-4. PubMed ID: 12548937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells.
    Shim H; Wood TK
    Biotechnol Bioeng; 2000 Dec; 70(6):693-8. PubMed ID: 11064339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.
    Leahy JG; Byrne AM; Olsen RH
    Appl Environ Microbiol; 1996 Mar; 62(3):825-33. PubMed ID: 8975612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.
    Raaijmakers JM; Weller DM
    Appl Environ Microbiol; 2001 Jun; 67(6):2545-54. PubMed ID: 11375162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation.
    Canada KA; Iwashita S; Shim H; Wood TK
    J Bacteriol; 2002 Jan; 184(2):344-9. PubMed ID: 11751810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of
    Guan Y; Bak F; Hennessy RC; Horn Herms C; Elberg CL; Dresbøll DB; Winding A; Sapkota R; Nicolaisen MH
    mSphere; 2024 Jul; 9(7):e0029424. PubMed ID: 38904362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils.
    van Bruggen AH; Semenov AM; Zelenev VV; Semenov AV; Raaijmakers JM; Sayler RJ; de Vos O
    Microb Ecol; 2008 Apr; 55(3):466-75. PubMed ID: 17934689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b.
    Sun AK; Wood TK
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):248-56. PubMed ID: 8920197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 Dec; 67(12):5384-91. PubMed ID: 11722883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.