These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9435082)

  • 1. Role of the air-water-solid interface in bacteriophage sorption experiments.
    Thompson SS; Flury M; Yates MV; Jury WA
    Appl Environ Microbiol; 1998 Jan; 64(1):304-9. PubMed ID: 9435082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems.
    Thompson SS; Yates MV
    Appl Environ Microbiol; 1999 Mar; 65(3):1186-90. PubMed ID: 10049881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Virus adsorption from batch experiments as influenced by air-water interface].
    Zhang H; Zhao BZ; Zhang JB; Zhang CZ; Wang QY; Chen J
    Huan Jing Ke Xue; 2007 Dec; 28(12):2800-5. PubMed ID: 18290440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Numerical simulation of isothermal equilibrium adsorption of virus onto typical soils in China].
    Zhang CZ; Zhao BZ; Zhang JB; Zhang H; Wang QY
    Huan Jing Ke Xue; 2007 Aug; 28(8):1835-40. PubMed ID: 17926420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures.
    Chrysikopoulos CV; Aravantinou AF
    J Hazard Mater; 2012 Sep; 233-234():148-57. PubMed ID: 22819478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of MS2 bacteriophage to layered double hydroxides: effects of reaction time, pH, and competing anions.
    You Y; Vance GF; Sparks DL; Zhuang J; Jin Y
    J Environ Qual; 2003; 32(6):2046-53. PubMed ID: 14674526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enteric Viral Surrogate Reduction by Chitosan.
    Davis R; Zivanovic S; Davidson PM; D'Souza DH
    Food Environ Virol; 2015 Dec; 7(4):359-65. PubMed ID: 26162243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system.
    Kim DK; Kim SJ; Kang DH
    Food Res Int; 2017 Jan; 91():115-123. PubMed ID: 28290315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1.
    Anders R; Chrysikopoulos CV
    Environ Sci Technol; 2006 May; 40(10):3237-42. PubMed ID: 16749687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polymer and glass physicochemical properties on MS2 recovery from food contact surfaces.
    Yan R; Wang Y; Duncan TV; Shieh YC
    Food Microbiol; 2020 May; 87():103354. PubMed ID: 31948611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composting for avian influenza virus elimination.
    Elving J; Emmoth E; Albihn A; Vinnerås B; Ottoson J
    Appl Environ Microbiol; 2012 May; 78(9):3280-5. PubMed ID: 22389376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and removal of bacteriophages MS2 and PhiX174 in steel slag-amended soils: column experiments and transport model analyses.
    Park JA; Kang JK; Kim JH; Kim SB; Yu S; Kim TH
    Environ Technol; 2014; 35(9-12):1199-207. PubMed ID: 24701916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus' (MS2, phiX174, and Aichi) attachment on sand measured by atomic force microscopy and their transport through sand columns.
    Attinti R; Wei J; Kniel K; Sims JT; Jin Y
    Environ Sci Technol; 2010 Apr; 44(7):2426-32. PubMed ID: 20205469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles.
    Gutierrez L; Li X; Wang J; Nangmenyi G; Economy J; Kuhlenschmidt TB; Kuhlenschmidt MS; Nguyen TH
    Water Res; 2009 Dec; 43(20):5198-208. PubMed ID: 19766286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis.
    Misstear DB; Gill LW
    J Photochem Photobiol B; 2012 Feb; 107():1-8. PubMed ID: 22218135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light.
    Syngouna VI; Chrysikopoulos CV
    J Colloid Interface Sci; 2017 Jul; 497():117-125. PubMed ID: 28282563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride - a mechanistic study.
    Kreißel K; Bösl M; Hügler M; Lipp P; Franzreb M; Hambsch B
    Water Res; 2014 Mar; 51():144-51. PubMed ID: 24429100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramic media amended with metal oxide for the capture of viruses in drinking water.
    Brown J; Sobsey MD
    Environ Technol; 2009 Apr; 30(4):379-91. PubMed ID: 19492549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.
    Klitzke S; Schroeder J; Selinka HC; Szewzyk R; Chorus I
    Sci Total Environ; 2015 Jun; 518-519():130-8. PubMed ID: 25747372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of MS2 bacteriophage by streamer corona discharge in water.
    Lee C; Kim J; Yoon J
    Chemosphere; 2011 Feb; 82(8):1135-40. PubMed ID: 21144553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.