These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 9435178)
1. The nitric oxide/cyclic GMP system at the supraspinal site is involved in the development of acute morphine antinociceptive tolerance. Xu JY; Hill KP; Bidlack JM J Pharmacol Exp Ther; 1998 Jan; 284(1):196-201. PubMed ID: 9435178 [TBL] [Abstract][Full Text] [Related]
2. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide/cyclic guanosine monophosphate system in the spinal cord differentially modulates intracerebroventricularly administered morphine- and beta-endorphin-induced antinociception in the mouse. Xu JY; Tseng LF J Pharmacol Exp Ther; 1995 Jul; 274(1):8-16. PubMed ID: 7616452 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological evidence that nitric oxide mediates the antinociception produced by muscarinic agonists in the rostral ventral medulla of rats. Iwamoto ET; Marion L J Pharmacol Exp Ther; 1994 May; 269(2):699-708. PubMed ID: 7514222 [TBL] [Abstract][Full Text] [Related]
5. Pharmacologic evidence that spinal muscarinic analgesia is mediated by an L-arginine/nitric oxide/cyclic GMP cascade in rats. Iwamoto ET; Marion L J Pharmacol Exp Ther; 1994 Nov; 271(2):601-8. PubMed ID: 7965774 [TBL] [Abstract][Full Text] [Related]
6. Possible mechanisms of action in quercetin reversal of morphine tolerance and dependence. Naidu PS; Singh A; Joshi D; Kulkarni SK Addict Biol; 2003 Sep; 8(3):327-36. PubMed ID: 13129835 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of morphine tolerance and dependence by aminoguanidine in mice. Abdel-Zaher AO; Hamdy MM; Aly SA; Abdel-Hady RH; Abdel-Rahman S Eur J Pharmacol; 2006 Jul; 540(1-3):60-6. PubMed ID: 16730698 [TBL] [Abstract][Full Text] [Related]
8. Intrathecally injected morphine inhibits inflammatory paw edema: the involvement of nitric oxide and cyclic-guanosine monophosphate. Brock SC; Tonussi CR Anesth Analg; 2008 Mar; 106(3):965-71, table of contents. PubMed ID: 18292447 [TBL] [Abstract][Full Text] [Related]
10. Possible involvement of the spinal nitric oxide/cGMP pathway in vincristine-induced painful neuropathy in mice. Kamei J; Tamura N; Saitoh A Pain; 2005 Sep; 117(1-2):112-20. PubMed ID: 16098672 [TBL] [Abstract][Full Text] [Related]
11. Lithium chloride disrupts consolidation of morphine-induced conditioned place preference in male mice: the nitric oxide/cyclic GMP signaling pathway. Kiyani A; Javadi-Paydar M; Mohammadkhani H; Esmaeili B; Dehpour AR Behav Brain Res; 2011 Jun; 219(2):240-7. PubMed ID: 21241742 [TBL] [Abstract][Full Text] [Related]
12. The antinociceptive activity of Muntingia calabura aqueous extract and the involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in its observed activity in mice. Zakaria ZA; Sulaiman MR; Jais AM; Somchit MN; Jayaraman KV; Balakhrisnan G; Abdullah FC Fundam Clin Pharmacol; 2006 Aug; 20(4):365-72. PubMed ID: 16867020 [TBL] [Abstract][Full Text] [Related]
13. Preventing morphine antinociceptive tolerance by irreversible mu opioid antagonists before the onset of their antagonism. Jiang Q; Seyed-Mozaffari A; Sebastian A; Archer S; Bidlack JM J Pharmacol Exp Ther; 1995 May; 273(2):680-8. PubMed ID: 7752070 [TBL] [Abstract][Full Text] [Related]
14. Morphine-induced antinociception in the formalin test: sensitization and interactions with D1 and D2 dopamine receptors and nitric oxide agents. Zarrindast MR; Asgari-Afshar A; Sahebgharani M Behav Pharmacol; 2007 May; 18(3):177-84. PubMed ID: 17426481 [TBL] [Abstract][Full Text] [Related]
15. Role of nitric oxide/cyclic GMP/K(+) channel pathways in the antinociceptive effect caused by 2,3-bis(mesitylseleno)propenol. Jesse CR; Savegnago L; Nogueira CW Life Sci; 2007 Dec; 81(25-26):1694-702. PubMed ID: 18031763 [TBL] [Abstract][Full Text] [Related]
16. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Javanmardi K; Parviz M; Sadr SS; Keshavarz M; Minaii B; Dehpour AR Clin Exp Pharmacol Physiol; 2005 Jul; 32(7):585-9. PubMed ID: 16026519 [TBL] [Abstract][Full Text] [Related]
17. Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II. Tang L; Shukla PK; Wang LX; Wang ZJ J Pharmacol Exp Ther; 2006 May; 317(2):901-9. PubMed ID: 16505162 [TBL] [Abstract][Full Text] [Related]
18. The spinal nitric oxide involved in the inhibitory effect of midazolam on morphine-induced analgesia tolerance. Cao JL; Ding HL; He JH; Zhang LC; Duan SM; Zeng YM Pharmacol Biochem Behav; 2005 Mar; 80(3):493-503. PubMed ID: 15740792 [TBL] [Abstract][Full Text] [Related]
19. Effect of N omega-nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor, on stress- and morphine-induced prolactin release in male rats. Matton A; Bollengier F; Finné E; Vanhaelst L Br J Pharmacol; 1997 Jan; 120(2):268-72. PubMed ID: 9117119 [TBL] [Abstract][Full Text] [Related]
20. Effects L-NG-nitro arginine methyl ester (L-NAME), L-NG-monomethyl arginine (L-NMMA) and L-arginine on the antinociceptive effects of morphine in mice. Dambisya YM; Lee TL Methods Find Exp Clin Pharmacol; 1995 Nov; 17(9):577-82. PubMed ID: 8786670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]