These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 9435411)

  • 1. Effects of therapy with recombinant human growth hormone on insulin-like growth factor system components and serum levels of biochemical markers of bone formation in children after severe burn injury.
    Klein GL; Wolf SE; Langman CB; Rosen CJ; Mohan S; Keenan BS; Matin S; Steffen C; Nicolai M; Sailer DE; Herndon DN
    J Clin Endocrinol Metab; 1998 Jan; 83(1):21-4. PubMed ID: 9435411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating whether serum IGF-1 and IGFBP-3 levels reflect the height outcome in prepubertal children upon rhGH therapy: LG growth study database.
    Kim M; Kim EY; Kim EY; So CH; Kim CJ
    PLoS One; 2021; 16(11):e0259287. PubMed ID: 34723984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment.
    Herndon DN; Ramzy PI; DebRoy MA; Zheng M; Ferrando AA; Chinkes DL; Barret JP; Wolfe RR; Wolf SE
    Ann Surg; 1999 May; 229(5):713-20; discussion 720-2. PubMed ID: 10235530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal unraveling: The impact of recombinant human growth hormone on spontaneous brain activity in children with short stature-A resting-state fMRI study.
    Shen L; Lin X; Wang C; Chen X; Li J; Wang W; Tang J; Shan X; Yan Z; Lu Y
    J Neuroradiol; 2024 Jun; 51(4):101159. PubMed ID: 37827488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are the Effects of Oral and Vaginal Contraceptives on Bone Formation in Young Women Mediated via the Growth Hormone-IGF-I Axis?
    Allaway HCM; Misra M; Southmayd EA; Stone MS; Weaver CM; Petkus DL; De Souza MJ
    Front Endocrinol (Lausanne); 2020; 11():334. PubMed ID: 32612574
    [No Abstract]   [Full Text] [Related]  

  • 6. Recombinant human growth hormone promotes wound angiogenesis in burned mice through the ERK signaling pathway.
    Shao Y; Han M; Chen G; Song G
    Cell Mol Biol (Noisy-le-grand); 2024 May; 70(5):243-247. PubMed ID: 38814208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase 2 Randomized, Placebo-Controlled Clinical Trial of Recombinant Human Growth Hormone (rhGH) During Rehabilitation From Traumatic Brain Injury.
    Dubiel R; Callender L; Dunklin C; Harper C; Bennett M; Kreber L; Auchus R; Diaz-Arrastia R
    Front Endocrinol (Lausanne); 2018; 9():520. PubMed ID: 30250451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Update on Hypermetabolism in Pediatric Burn Patients.
    Layon SA; Williams AD; Parham MJ; Lee JO
    Semin Plast Surg; 2024 May; 38(2):133-144. PubMed ID: 38746705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Burn-induced hypermetabolism and skeletal muscle dysfunction.
    Knuth CM; Auger C; Jeschke MG
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C58-C71. PubMed ID: 33909503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Bone in Muscle Wasting.
    Klein GL
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the musculoskeletal system in post-burn hypermetabolism.
    Klein GL
    Metabolism; 2019 Aug; 97():81-86. PubMed ID: 31181216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Bone Secreted Factors in Burn-Induced Muscle Cachexia.
    Klein GL
    Curr Osteoporos Rep; 2018 Feb; 16(1):26-31. PubMed ID: 29344793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burn injury: review of pathophysiology and therapeutic modalities in major burns.
    Kaddoura I; Abu-Sittah G; Ibrahim A; Karamanoukian R; Papazian N
    Ann Burns Fire Disasters; 2017 Jun; 30(2):95-102. PubMed ID: 29021720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burn Injury Has Skeletal Site-Specific Effects on Bone Integrity and Markers of Bone Remodeling.
    Hoscheit M; Conner G; Roemer J; Vuckovska A; Abbasnia P; Vana P; Shankar R; Kennedy R; Callaci J
    J Burn Care Res; 2016; 37(6):367-378. PubMed ID: 27404166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol Modulation of the Postburn Hepatic Response.
    Chen MM; Carter SR; Curtis BJ; O'Halloran EB; Gamelli RL; Kovacs EJ
    J Burn Care Res; 2017; 38(1):e144-e157. PubMed ID: 26284631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of bone and skeletal muscle in severe burns.
    Klein GL
    Bone Res; 2015; 3():15002. PubMed ID: 26273535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns.
    Diaz EC; Herndon DN; Porter C; Sidossis LS; Suman OE; Børsheim E
    Burns; 2015 Jun; 41(4):649-57. PubMed ID: 25468473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant human growth hormone for treating burns and donor sites.
    Breederveld RS; Tuinebreijer WE
    Cochrane Database Syst Rev; 2014 Sep; 2014(9):CD008990. PubMed ID: 25222766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of production of recombinant human growth hormone in Escherichia coli.
    Rezaei M; Zarkesh-Esfahani SH
    J Res Med Sci; 2012 Jul; 17(7):681-5. PubMed ID: 23798931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burns: an update on current pharmacotherapy.
    Rojas Y; Finnerty CC; Radhakrishnan RS; Herndon DN
    Expert Opin Pharmacother; 2012 Dec; 13(17):2485-94. PubMed ID: 23121414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.