BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9435515)

  • 21. Epitope tagging permits cell surface detection of functional CFTR.
    Howard M; DuVall MD; Devor DC; Dong JY; Henze K; Frizzell RA
    Am J Physiol; 1995 Dec; 269(6 Pt 1):C1565-76. PubMed ID: 8572187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capacitance measurements reveal different pathways for the activation of CFTR.
    Weber WM; Cuppens H; Cassiman JJ; Clauss W; Van Driessche W
    Pflugers Arch; 1999 Sep; 438(4):561-9. PubMed ID: 10519152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes.
    Peters KW; Qi J; Watkins SC; Frizzell RA
    Am J Physiol; 1999 Jul; 277(1):C174-80. PubMed ID: 10409120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line.
    Lansdell KA; Cai Z; Kidd JF; Sheppard DN
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antisense oligonucleotide to PKC-epsilon alters cAMP-dependent stimulation of CFTR in Calu-3 cells.
    Liedtke CM; Cole TS
    Am J Physiol; 1998 Nov; 275(5):C1357-64. PubMed ID: 9814985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes.
    Schreiber R; Greger R; Nitschke R; Kunzelmann K
    Pflugers Arch; 1997 Nov; 434(6):841-7. PubMed ID: 9306020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity.
    Seibert FS; Linsdell P; Loo TW; Hanrahan JW; Clarke DM; Riordan JR
    J Biol Chem; 1996 Jun; 271(25):15139-45. PubMed ID: 8662892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein.
    Ma J; Tasch JE; Tao T; Zhao J; Xie J; Drumm ML; Davis PB
    J Biol Chem; 1996 Mar; 271(13):7351-6. PubMed ID: 8631756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents.
    Loussouarn G; Demolombe S; Mohammad-Panah R; Escande D; Baró I
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1565-73. PubMed ID: 8944640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
    Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes.
    Weber WM; Segal A; Simaels J; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Pflugers Arch; 2001 Mar; 441(6):850-9. PubMed ID: 11316271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
    Sugita M; Yue Y; Foskett JK
    EMBO J; 1998 Feb; 17(4):898-908. PubMed ID: 9463368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.
    Julien M; Verrier B; Cerutti M; Chappe V; Gola M; Devauchelle G; Becq F
    J Membr Biol; 1999 Apr; 168(3):229-39. PubMed ID: 10191357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.
    Pyle LC; Fulton JC; Sloane PA; Backer K; Mazur M; Prasain J; Barnes S; Clancy JP; Rowe SM
    Am J Respir Cell Mol Biol; 2010 Nov; 43(5):607-16. PubMed ID: 20042712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.