BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9435696)

  • 1. H+ secretion is inhibited by clostridial toxins in an inner medullary collecting duct cell line.
    Alexander EA; Shih T; Schwartz JH
    Am J Physiol; 1997 Dec; 273(6):F1054-7. PubMed ID: 9435696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of SNAP-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells.
    Banerjee A; Li G; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C775-81. PubMed ID: 11245593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNARE proteins regulate H(+)-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells.
    Banerjee A; Shih T; Alexander EA; Schwartz JH
    J Biol Chem; 1999 Sep; 274(37):26518-22. PubMed ID: 10473613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of synaptic neurotransmitter release mechanisms using bacterial toxins].
    Doussau F; Humeau Y; Vitiello F; Popoff MR; Poulain B
    J Soc Biol; 1999; 193(6):457-67. PubMed ID: 10783704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis.
    Li G; Alexander EA; Schwartz JH
    J Biol Chem; 2003 May; 278(22):19791-7. PubMed ID: 12651853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Munc-18-2 regulates exocytosis of H(+)-ATPase in rat inner medullary collecting duct cells.
    Nicoletta JA; Ross JJ; Li G; Cheng Q; Schwartz J; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1366-74. PubMed ID: 15240346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of SNAREs and H+-ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane.
    Schwartz JH; Li G; Yang Q; Suri V; Ross JJ; Alexander EA
    Kidney Int; 2007 Dec; 72(11):1310-5. PubMed ID: 17805241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro.
    Jo I; Harris HW; Amendt-Raduege AM; Majewski RR; Hammond TG
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1876-80. PubMed ID: 7534405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional importance of synaptobrevin and SNAP-25 during exocytosis of histamine by rat gastric enterochromaffin-like cells.
    Höhne-Zell B; Galler A; Schepp W; Gratzl M; Prinz C
    Endocrinology; 1997 Dec; 138(12):5518-26. PubMed ID: 9389539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNAP-25 and syntaxin, but not synaptobrevin 2, cooperate in the regulated release of nerve growth factor.
    Blöchl A
    Neuroreport; 1998 Jun; 9(8):1701-5. PubMed ID: 9665586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation.
    Macaulay SL; Hewish DR; Gough KH; Stoichevska V; MacPherson SF; Jagadish M; Ward CW
    Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):217-24. PubMed ID: 9164859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of SNARE protein expression in beta cell lines and pancreatic islets.
    Wheeler MB; Sheu L; Ghai M; Bouquillon A; Grondin G; Weller U; Beaudoin AR; Bennett MK; Trimble WS; Gaisano HY
    Endocrinology; 1996 Apr; 137(4):1340-8. PubMed ID: 8625909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses.
    Xu J; Luo F; Zhang Z; Xue L; Wu XS; Chiang HC; Shin W; Wu LG
    Cell Rep; 2013 May; 3(5):1414-21. PubMed ID: 23643538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of H+-ATPase by hypotonicity: a novel regulatory mechanism for H+ secretion in IMCD cells.
    Amlal H; Goel A; Soleimani M
    Am J Physiol; 1998 Oct; 275(4):F487-501. PubMed ID: 9755120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels.
    Nielsen S; Marples D; Birn H; Mohtashami M; Dalby NO; Trimble M; Knepper M
    J Clin Invest; 1995 Oct; 96(4):1834-44. PubMed ID: 7560075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of acidification in the rat inner medullary collecting duct.
    Alexander EA; Schwartz JH
    Am J Kidney Dis; 1991 Nov; 18(5):612-8. PubMed ID: 1659187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetanus and botulinal neurotoxins. Tools to understand exocytosis in neurons.
    Link E; Blasi J; Chapman ER; Edelmann L; Baumeister A; Binz T; Yamasaki S; Niemann H; Jahn R
    Adv Second Messenger Phosphoprotein Res; 1994; 29():47-58. PubMed ID: 7848727
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of acidification on the location of H+-ATPase in cultured inner medullary collecting duct cells.
    Alexander EA; Brown D; Shih T; McKee M; Schwartz JH
    Am J Physiol; 1999 Mar; 276(3):C758-63. PubMed ID: 10070004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of inner medullary collecting duct vacuolar H-adenosine triphosphatase to chronic acid or alkali loads in the rat.
    Bastani B; McEnaney S; Yang L; Gluck S
    Exp Nephrol; 1994; 2(3):171-5. PubMed ID: 7922269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidification adaptation along the inner medullary collecting duct.
    Bengele HH; McNamara ER; Schwartz JH; Alexander EA
    Am J Physiol; 1988 Dec; 255(6 Pt 2):F1155-9. PubMed ID: 3144183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.