BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9435905)

  • 1. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4360-71. PubMed ID: 9435905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4347-59. PubMed ID: 9435904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks.
    So SS; Karplus M
    J Med Chem; 1996 Mar; 39(7):1521-30. PubMed ID: 8691483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors.
    So SS; Karplus M
    J Med Chem; 1996 Dec; 39(26):5246-56. PubMed ID: 8978853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the novel molecular alignment method using the Hopfield Neural Network to 3D-QSAR.
    Arakawa M; Hasegawa K; Funatsu K
    J Chem Inf Comput Sci; 2003; 43(5):1396-402. PubMed ID: 14502472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel alignment method of small molecules using the Hopfield Neural Network.
    Arakawa M; Hasegawa K; Funatsu K
    J Chem Inf Comput Sci; 2003; 43(5):1390-5. PubMed ID: 14502471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors.
    Chaudhaery SS; Roy KK; Saxena AK
    J Chem Inf Model; 2009 Jun; 49(6):1590-601. PubMed ID: 19441865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural bioinformatics and QSAR analysis applied to the acetylcholinesterase and bispyridinium aldoximes.
    Mager PP; Weber A
    Drug Des Discov; 2003; 18(4):127-50. PubMed ID: 15553925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices.
    Kubinyi H; Hamprecht FA; Mietzner T
    J Med Chem; 1998 Jul; 41(14):2553-64. PubMed ID: 9651159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA.
    Akula N; Lecanu L; Greeson J; Papadopoulos V
    Bioorg Med Chem Lett; 2006 Dec; 16(24):6277-80. PubMed ID: 17049234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors.
    Hu L; Chen G; Chau RM
    J Mol Graph Model; 2006 Jan; 24(4):244-53. PubMed ID: 16226911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S
    FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of methods for modeling quantitative structure-activity relationships.
    Sutherland JJ; O'Brien LA; Weaver DF
    J Med Chem; 2004 Oct; 47(22):5541-54. PubMed ID: 15481990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR analysis of acetylcholinesterase inhibitors by use of structure similarity methods.
    Jerman-Blazic B; Fabic-Petrac I; Pecar S; Stalc A
    Prog Clin Biol Res; 1989; 291():213-6. PubMed ID: 2726849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional quantitative structure: activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA.
    Nunthaboot N; Tonmunphean S; Parasuk V; Wolschann P; Kokpol S
    Eur J Med Chem; 2006 Dec; 41(12):1359-72. PubMed ID: 17002889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network.
    Polley MJ; Winkler DA; Burden FR
    J Med Chem; 2004 Dec; 47(25):6230-8. PubMed ID: 15566293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.
    Mor M; Rivara S; Lodola A; Lorenzi S; Bordi F; Plazzi PV; Spadoni G; Bedini A; Duranti A; Tontini A; Tarzia G
    Chem Biodivers; 2005 Nov; 2(11):1438-51. PubMed ID: 17191945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.