BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9436204)

  • 1. Simulated microgravity impairs vascular contractility.
    Purdy RE; Sara D; Duckles SP; Krause DN
    Proc West Pharmacol Soc; 1997; 40():25-7. PubMed ID: 9436204
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of 14-day tail suspension on vasoreactivity of arteries from different parts of the body in rats.
    Ma J; Zhang LF; Yu ZB
    J Gravit Physiol; 1996 Sep; 3(2):9-10. PubMed ID: 11540297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of simulated weightlessness on arterial vasculature (an experimental study on vascular deconditioning).
    Zhang LF; Mao QW; Ma J; Yu ZB
    J Gravit Physiol; 1996 Sep; 3(2):5-8. PubMed ID: 11540280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated microgravity impairs vascular contractility: role of nitric oxide-dependent vasodilator mechanisms.
    Sangha DS; Vaziri ND; Ding Y; Han S; Alem N; Chen YA; Purdy RE
    Proc West Pharmacol Soc; 1999; 42():5-7. PubMed ID: 10697672
    [No Abstract]   [Full Text] [Related]  

  • 5. Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall.
    Hwang S; Shelkovnikov SA; Purdy RE
    J Appl Physiol (1985); 2007 Apr; 102(4):1595-603. PubMed ID: 17218426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of simulated microgravity on vascular contractility.
    Purdy RE; Duckles SP; Krause DN; Rubera KM; Sara D
    J Appl Physiol (1985); 1998 Oct; 85(4):1307-15. PubMed ID: 9760321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A study on gene expression of angiotensin receptors in arteries from tail-suspended rats].
    Zhang LN; Meng QJ; Zhang LF; Ma J
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):343-6. PubMed ID: 12449139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats.
    Kang H; Fan Y; Zhao P; Ren C; Wang Z; Deng X
    J Appl Physiol (1985); 2016 Mar; 120(5):537-45. PubMed ID: 26679611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated microgravity-induced vascular hyporesponsiveness: role of signal transduction.
    Kahwaji CI; Sangha DS; Sheibani S; Ashori M; Nguyen H; Kim Y; Purdy RE
    Proc West Pharmacol Soc; 1999; 42():9-12. PubMed ID: 10697673
    [No Abstract]   [Full Text] [Related]  

  • 10. Vascular hyporesponsiveness in simulated microgravity: role of nitric oxide-dependent mechanisms.
    Sangha DS; Vaziri ND; Ding Y; Purdy RE
    J Appl Physiol (1985); 2000 Feb; 88(2):507-17. PubMed ID: 10658017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of arterial vasculature during simulated weightlessness and its possible role in the genesis of postflight orthostatic intolerance.
    Zhang LF; Ma J; Mao QW; Yu ZB
    J Gravit Physiol; 1997 Jul; 4(2):P97-100. PubMed ID: 11540713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Active relaxation of smooth muscle structures in response to vascular wall distension].
    Kulagina VP; Udel'nov MG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1980; (11):46-9. PubMed ID: 7459404
    [No Abstract]   [Full Text] [Related]  

  • 13. Time course and reversibility of arterial vasoreactivity changes in simulated microgravity rats.
    Ma J; Zhang LF; Yu ZB; Zhang LN
    J Gravit Physiol; 1997 Jul; 4(2):P45-6. PubMed ID: 11540694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats.
    Zhang R; Jia G; Bao J; Zhang Y; Bai Y; Lin L; Tang H; Ma J
    J Physiol Sci; 2008 Feb; 58(1):67-73. PubMed ID: 18221587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two isoforms of cyclooxygenase contribute to augmented endothelium-dependent contractions in femoral arteries of 1-year-old rats.
    Shi Y; Man RY; Vanhoutte PM
    Acta Pharmacol Sin; 2008 Feb; 29(2):185-92. PubMed ID: 18215347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homocysteine decreases endothelium-dependent vasorelaxation in porcine arteries.
    Chen C; Conklin BS; Ren Z; Zhong DS
    J Surg Res; 2002 Jan; 102(1):22-30. PubMed ID: 11792147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of endothelium mediated vascular relaxation as a response to various clamping pressure. Part I. A pharmacological study.
    Gersak B; Trobec R; Krisch I
    Panminerva Med; 1998 Dec; 40(4):280-5. PubMed ID: 9973822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Age characteristics of the effect of insulin on smooth muscle cells of the femoral artery].
    Gurevich MI; Frol'kis IV
    Biull Eksp Biol Med; 1983 Mar; 95(3):11-3. PubMed ID: 6338959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y; Ku DD; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography.
    McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW
    Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.