These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 9436617)
1. Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Nakahara H; Kanno T; Inai Y; Utsumi K; Hiramatsu M; Mori A; Packer L Free Radic Biol Med; 1998 Jan; 24(1):85-92. PubMed ID: 9436617 [TBL] [Abstract][Full Text] [Related]
2. Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Okatani Y; Wakatsuki A; Reiter RJ; Miyahara Y Int J Biochem Cell Biol; 2003 Mar; 35(3):367-75. PubMed ID: 12531250 [TBL] [Abstract][Full Text] [Related]
3. Oxidative damage in the senescence-accelerated mouse. Mori A; Utsumi K; Liu J; Hosokawa M Ann N Y Acad Sci; 1998 Nov; 854():239-50. PubMed ID: 9928434 [TBL] [Abstract][Full Text] [Related]
4. Hepatic mitochondrial dysfunction in senescence-accelerated mice: correction by long-term, orally administered physiological levels of melatonin. Okatani Y; Wakatsuki A; Reiter RJ; Miyahara Y J Pineal Res; 2002 Oct; 33(3):127-33. PubMed ID: 12220325 [TBL] [Abstract][Full Text] [Related]
5. [Studies on aging through analysis of the glucose metabolism related to the ATP--production of the senescence accelerated mouse (SAM)]. Shimano Y Hokkaido Igaku Zasshi; 1998 Nov; 73(6):557-69. PubMed ID: 10036614 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies of early liver dysfunction in senescence-accelerated mouse using mitochondrial proteomics approaches. Liu Y; He J; Ji S; Wang Q; Pu H; Jiang T; Meng L; Yang X; Ji J Mol Cell Proteomics; 2008 Sep; 7(9):1737-47. PubMed ID: 18515266 [TBL] [Abstract][Full Text] [Related]
8. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848 [TBL] [Abstract][Full Text] [Related]
9. Age-related changes of Nrf2 and phosphorylated GSK-3β in a mouse model of accelerated aging (SAMP8). Tomobe K; Shinozuka T; Kuroiwa M; Nomura Y Arch Gerontol Geriatr; 2012; 54(2):e1-7. PubMed ID: 21784539 [TBL] [Abstract][Full Text] [Related]
10. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Eckert GP; Schiborr C; Hagl S; Abdel-Kader R; Müller WE; Rimbach G; Frank J Neurochem Int; 2013 Apr; 62(5):595-602. PubMed ID: 23422877 [TBL] [Abstract][Full Text] [Related]
11. Rapid decrease of glycogen concentration in the hearts of senescence-accelerated mice during aging. Kurokawa T; Ozaki N; Sato E; Ishibashi S Mech Ageing Dev; 1997 Sep; 97(3):227-36. PubMed ID: 9234236 [TBL] [Abstract][Full Text] [Related]
12. Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. García-Matas S; Gutierrez-Cuesta J; Coto-Montes A; Rubio-Acero R; Díez-Vives C; Camins A; Pallàs M; Sanfeliu C; Cristòfol R Aging Cell; 2008 Oct; 7(5):630-40. PubMed ID: 18616637 [TBL] [Abstract][Full Text] [Related]
13. Age-related changes of forkhead transcription factor FOXO1 in the liver of senescence-accelerated mouse SAMP8. Tomobe K; Shinozuka T; Kawashima T; Kawashima-Ohya Y; Nomura Y Arch Gerontol Geriatr; 2013; 57(3):417-22. PubMed ID: 23806789 [TBL] [Abstract][Full Text] [Related]
14. Age-related changes of anti-elastin antibodies in senescence-accelerated mice. Atanasova M; Konova E; Georgieva M; Dimitrova A; Coquand-Gandit M; Faury G; Baydanoff S Gerontology; 2010; 56(3):310-8. PubMed ID: 19752527 [TBL] [Abstract][Full Text] [Related]
15. An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Nishikawa T; Takahashi JA; Fujibayashi Y; Fujisawa H; Zhu B; Nishimura Y; Ohnishi K; Higuchi K; Hashimoto N; Hosokawa M Neurosci Lett; 1998 Sep; 254(2):69-72. PubMed ID: 9779922 [TBL] [Abstract][Full Text] [Related]
16. Oxidative damage in the livers of senescence-accelerated mice: a gender-related response. Tomás-Zapico C; Alvarez-García O; Sierra V; Vega-Naredo I; Caballero B; Joaquín García J; Acuña-Castroviejo D; Rodríguez MI; Tolivia D; Rodríguez-Colunga MJ; Coto-Montes A Can J Physiol Pharmacol; 2006 Feb; 84(2):213-20. PubMed ID: 16900947 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse. Kurokawa T; Asada S; Nishitani S; Hazeki O Neurosci Lett; 2001 Feb; 298(2):135-8. PubMed ID: 11163296 [TBL] [Abstract][Full Text] [Related]
18. Age-related changes in energy production in fresh senescence-accelerated mouse brain slices as revealed by positron autoradiography. Omata N; Murata T; Fujibayashi Y; Waki A; Sadato N; Yoshimoto M; Wada Y; Yonekura Y Dement Geriatr Cogn Disord; 2001; 12(2):78-84. PubMed ID: 11173878 [TBL] [Abstract][Full Text] [Related]