These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9436950)

  • 21. Novel human intervertebral disc strain template to quantify regional three-dimensional strains in a population and compare to internal strains predicted by a finite element model.
    Showalter BL; DeLucca JF; Peloquin JM; Cortes DH; Yoder JH; Jacobs NT; Wright AC; Gee JC; Vresilovic EJ; Elliott DM
    J Orthop Res; 2016 Jul; 34(7):1264-73. PubMed ID: 26694516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study.
    Kang H; Park P; La Marca F; Hollister SJ; Lin CY
    Neurosurg Focus; 2010 Jun; 28(6):E9. PubMed ID: 20568924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact.
    Cronin DS
    J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intervertebral disc creep behavior assessment through an open source finite element solver.
    Castro AP; Wilson W; Huyghe JM; Ito K; Alves JL
    J Biomech; 2014 Jan; 47(1):297-301. PubMed ID: 24210477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI of the lumbar intervertebral disc.
    Morgan S; Saifuddin A
    Clin Radiol; 1999 Nov; 54(11):703-23. PubMed ID: 10580761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Method to geometrically personalize a detailed finite-element model of the spine.
    Lalonde NM; Petit Y; Aubin CE; Wagnac E; Arnoux PJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2014-21. PubMed ID: 23434601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations.
    Ruiz C; Noailly J; Lacroix D
    J Mech Behav Biomed Mater; 2013 Oct; 26():1-10. PubMed ID: 23796430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading.
    Natarajan RN; Andersson GB
    Spine (Phila Pa 1976); 1999 Sep; 24(18):1873-81. PubMed ID: 10515010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in intervertebral disc cross-sectional area with bed rest and space flight.
    LeBlanc AD; Evans HJ; Schneider VS; Wendt RE; Hedrick TD
    Spine (Phila Pa 1976); 1994 Apr; 19(7):812-7. PubMed ID: 8202800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution.
    Marini G; Studer H; Huber G; Püschel K; Ferguson SJ
    Biomech Model Mechanobiol; 2016 Jun; 15(3):543-60. PubMed ID: 26243011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration.
    Qasim M; Natarajan RN; An HS; Andersson GB
    J Biomech; 2014 Jan; 47(1):24-31. PubMed ID: 24231247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intervertebral disc segmentation in MR images using anisotropic oriented flux.
    Law MW; Tay K; Leung A; J Garvin G; Li S
    Med Image Anal; 2013 Jan; 17(1):43-61. PubMed ID: 23107642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A finite element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc.
    Furlong DR; Palazotto AN
    J Biomech; 1983; 16(10):785-95. PubMed ID: 6643516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Annulus fibrosus microstructure: an explanation to local heterogeneities.
    Baldit A; Ambard D; Cherblanc F; Royer P
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():38-9. PubMed ID: 25074153
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of disc degeneration on the mechanical behavior of the human lumbar spine: a probabilistic finite element study.
    Bashkuev M; Reitmaier S; Schmidt H
    Spine J; 2018 Oct; 18(10):1910-1920. PubMed ID: 29886164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow.
    Vergroesen PA; van der Veen AJ; Emanuel KS; van Dieën JH; Smit TH
    J Biomech; 2016 Apr; 49(6):857-863. PubMed ID: 26684430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of MR elastography of the intervertebral disc.
    Ben-Abraham EI; Chen J; Felmlee JP; Rossman P; Manduca A; An KN; Ehman RL
    Magn Reson Imaging; 2017 Jun; 39():132-137. PubMed ID: 26743429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.