These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9436950)

  • 41. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.
    Silva P; Crozier S; Veidt M; Pearcy MJ
    J Mater Sci Mater Med; 2005 Jul; 16(7):663-9. PubMed ID: 15965599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurement of surface deformation of soft tissue.
    Stokes I; Greenapple DM
    J Biomech; 1985; 18(1):1-7. PubMed ID: 3980485
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of shear force on intervertebral disc: an in vivo rabbit study.
    Xia DD; Lin SL; Wang XY; Wang YL; Xu HM; Zhou F; Tan J
    Eur Spine J; 2015 Aug; 24(8):1711-9. PubMed ID: 25784595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite element modeling of stress distribution in intervertebral spacers of different surface geometries.
    Lee JH; Baek MH; Kim YE; Seo JH; Song DR; Ryu HS; Lee CK; Chang BS
    Artif Organs; 2013 Nov; 37(11):1014-20. PubMed ID: 23909891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element modeling of the growth plate in a detailed spine model.
    Sylvestre PL; Villemure I; Aubin CE
    Med Biol Eng Comput; 2007 Oct; 45(10):977-88. PubMed ID: 17687580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Finite element analysis on stress change of the lumbar disc degeneration].
    Yan JZ; Wu ZH; Wang XS; Xing ZJ; Zhao Y; Zhang JG; Wang YP; Qiu GX
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Aug; 31(4):464-7. PubMed ID: 19771735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Review of the fluid flow within intervertebral discs - How could in vitro measurements replicate in vivo?
    Schmidt H; Reitmaier S; Graichen F; Shirazi-Adl A
    J Biomech; 2016 Oct; 49(14):3133-3146. PubMed ID: 27651134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Slow deformation of intervertebral discs.
    Broberg KB
    J Biomech; 1993; 26(4-5):501-12. PubMed ID: 8478352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An analytical model of intervertebral disc mechanics.
    McNally DS; Arridge RG
    J Biomech; 1995 Jan; 28(1):53-68. PubMed ID: 7852442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative MRI water content mapping of porcine intervertebral disc during uniaxial compression.
    Ghiss M; Giannesini B; Tropiano P; Tourki Z; Boiron O
    Comput Methods Biomech Biomed Engin; 2016; 19(10):1079-88. PubMed ID: 26670583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle.
    Malko JA; Hutton WC; Fajman WA
    Spine (Phila Pa 1976); 1999 May; 24(10):1015-22. PubMed ID: 10332795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression.
    Yao H; Gu WY
    J Biomech; 2007; 40(9):2071-7. PubMed ID: 17125776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation.
    Clouthier AL; Hosseini HS; Maquer G; Zysset PK
    Med Eng Phys; 2015 Jun; 37(6):599-604. PubMed ID: 25922211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relevance of in vitro and in vivo models for intervertebral disc degeneration.
    An HS; Masuda K
    J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():88-94. PubMed ID: 16595451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis).
    Goto K; Tajima N; Chosa E; Totoribe K; Kubo S; Kuroki H; Arai T
    J Orthop Sci; 2003; 8(4):577-84. PubMed ID: 12898313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height.
    Szkoda-Poliszuk K; Żak M; Pezowicz C
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3107. PubMed ID: 29799170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fatigue responses of the human cervical spine intervertebral discs.
    Yoganandan N; Umale S; Stemper B; Snyder B
    J Mech Behav Biomed Mater; 2017 May; 69():30-38. PubMed ID: 28033533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.