These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9437037)

  • 21. Mormyrid electrosensory lobe in vitro: morphology of cells and circuits.
    Han VZ; Bell CC; Grant K; Sugawara Y
    J Comp Neurol; 1999 Feb; 404(3):359-74. PubMed ID: 9952353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe.
    Bell CC; Caputi A; Grant K
    J Neurosci; 1997 Aug; 17(16):6409-23. PubMed ID: 9236249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time domain processing of electric organ discharge waveforms by pulse-type electric fish.
    Hopkins CD; Westby GW
    Brain Behav Evol; 1986; 29(1-2):77-104. PubMed ID: 3594199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1996 Jan; 16(1):380-91. PubMed ID: 8613805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis.
    Mugnaini E; Maler L
    Anat Embryol (Berl); 1987; 176(3):313-36. PubMed ID: 3307524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse.
    Zhang J; Han VZ; Meek J; Bell CC
    J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sensing behavior on a latency code.
    Sawtell NB; Williams A; Roberts PD; von der Emde G; Bell CC
    J Neurosci; 2006 Aug; 26(32):8221-34. PubMed ID: 16899717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.
    Carlson BA
    J Neurosci; 2003 Nov; 23(31):10128-36. PubMed ID: 14602829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Meek J; Grant K; Sugawara Y; Hafmans TG; Veron M; Denizot JP
    J Comp Neurol; 1996 Nov; 375(1):43-65. PubMed ID: 8913892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
    Kennedy A; Wayne G; Kaifosh P; Alviña K; Abbott LF; Sawtell NB
    Nat Neurosci; 2014 Mar; 17(3):416-22. PubMed ID: 24531306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei.
    Sawtell NB; Mohr C; Bell CC
    J Neurophysiol; 2005 Apr; 93(4):2090-103. PubMed ID: 15774712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning.
    Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G
    Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myelinated dendrites in the mormyrid electrosensory lobe.
    Meek J; Hafmans TG; Han V; Bell CC; Grant K
    J Comp Neurol; 2001 Mar; 431(3):255-75. PubMed ID: 11170004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcircuitry of the mormyrid electrosensory lateral line lobe.
    Meek J
    Eur J Morphol; 1994 Aug; 32(2-4):279-82. PubMed ID: 7803180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.