These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 9437037)
61. Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Mugnaini E; Maler L Synapse; 1987; 1(1):32-56. PubMed ID: 2850619 [TBL] [Abstract][Full Text] [Related]
62. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology. Grant K; Meek J; Sugawara Y; Veron M; Denizot JP; Hafmans TG; Serrier J; Szabo T J Comp Neurol; 1996 Nov; 375(1):18-42. PubMed ID: 8913891 [TBL] [Abstract][Full Text] [Related]
63. Sex recognition by electric cues in a sound-producing mormyrid fish, Pollimyrus isidori. Crawford JD Brain Behav Evol; 1991; 38(1):20-38. PubMed ID: 1933253 [TBL] [Abstract][Full Text] [Related]
64. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish. Gallant JR; Arnegard ME; Sullivan JP; Carlson BA; Hopkins CD J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):799-817. PubMed ID: 21505877 [TBL] [Abstract][Full Text] [Related]
65. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish. Roberts PD J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096 [TBL] [Abstract][Full Text] [Related]
66. Receptive field organization across multiple electrosensory maps. I. Columnar organization and estimation of receptive field size. Maler L J Comp Neurol; 2009 Oct; 516(5):376-93. PubMed ID: 19655387 [TBL] [Abstract][Full Text] [Related]
67. A diversity of synaptic filters are created by temporal summation of excitation and inhibition. George AA; Lyons-Warren AM; Ma X; Carlson BA J Neurosci; 2011 Oct; 31(41):14721-34. PubMed ID: 21994388 [TBL] [Abstract][Full Text] [Related]
68. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. Carlson BA; Gallant JR J Neurogenet; 2013 Sep; 27(3):106-29. PubMed ID: 23802152 [TBL] [Abstract][Full Text] [Related]
69. Electroreception, electrogenesis and electric signal evolution. Crampton WGR J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523 [TBL] [Abstract][Full Text] [Related]
70. Electric organ discharges and electric images during electrolocation. Assad C; Rasnow B; Stoddard PK J Exp Biol; 1999 May; 202(Pt 10):1185-93. PubMed ID: 10210660 [TBL] [Abstract][Full Text] [Related]
71. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. Heiligenberg W Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906 [TBL] [Abstract][Full Text] [Related]
72. Functional foveae in an electrosensory system. Bacelo J; Engelmann J; Hollmann M; von der Emde G; Grant K J Comp Neurol; 2008 Nov; 511(3):342-59. PubMed ID: 18803238 [TBL] [Abstract][Full Text] [Related]
73. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia. Hagedorn M; Vischer HA; Heiligenberg W J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744 [TBL] [Abstract][Full Text] [Related]
74. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae. Picq S; Sperling J; Cheng CJ; Carlson BA; Gallant JR Evolution; 2020 May; 74(5):911-935. PubMed ID: 32187650 [TBL] [Abstract][Full Text] [Related]
75. The role of motor command feedback in electrosensory processing. Meek J; Grant K Eur J Morphol; 1994 Aug; 32(2-4):225-34. PubMed ID: 7803171 [TBL] [Abstract][Full Text] [Related]
76. Rapid activation of GABAergic interneurons and possible calcium independent GABA release in the mormyrid electrosensory lobe. Han VZ; Grant K; Bell CC J Neurophysiol; 2000 Mar; 83(3):1592-604. PubMed ID: 10712482 [TBL] [Abstract][Full Text] [Related]
77. Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. Bastian J; Bratton B J Neurosci; 1990 Apr; 10(4):1226-40. PubMed ID: 2158527 [TBL] [Abstract][Full Text] [Related]
78. Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. Carlson BA; Hopkins CD; Thomas P Horm Behav; 2000 Nov; 38(3):177-86. PubMed ID: 11038292 [TBL] [Abstract][Full Text] [Related]
79. A quest for excitation: Theoretical arguments and immunohistochemical evidence of excitatory granular cells in the ELL of Gnathonemus petersii. Hollmann V; Engelmann J; Gómez-Sena L J Physiol Paris; 2016 Oct; 110(3 Pt B):190-199. PubMed ID: 27815181 [TBL] [Abstract][Full Text] [Related]
80. Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms. Bass AH J Comp Neurol; 1986 Feb; 244(3):313-30. PubMed ID: 3958230 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]