These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 94373)

  • 21. Norepinephrine sensitivity and membrane potentials of caudal arterial muscle in DOCA-salt, Dahl, and SHR hypertension in rat.
    Hermsmeyer K; Abel PW; Trapani AJ
    Hypertension; 1982; 4(3 Pt 2):49-51. PubMed ID: 6279507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced NE uptake by isolated hypothalamic storage vesicles of hypertensive rats.
    Rho JH; Newman BL; Alexander N; Hough KL
    Hypertension; 1983; 5(1):3-7. PubMed ID: 6848466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered cardiac noradrenaline stores in DOCA-salt hypertensive rats.
    Howe PR; West MJ; Chalmers JP
    Clin Exp Pharmacol Physiol; 1981 Jan; 8(1):83-7. PubMed ID: 7471523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alpha 1-adrenoceptor subtypes and inositol phosphates production in heart ventricles of spontaneously hypertensive rats.
    Ivorra D; Gascón S; Vila E; Badia A
    J Cardiovasc Pharmacol; 1993 Jun; 21(6):931-6. PubMed ID: 7687719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of renal denervation on arterial pressure and renal norepinephrine concentration in Wistar-Kyoto and spontaneously hypertensive rats.
    Kline RL; Stuart PJ; Mercer PF
    Can J Physiol Pharmacol; 1980 Nov; 58(11):1384-8. PubMed ID: 7214204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac norepinephrine, beta-adrenoceptors, and Gi alpha-proteins in prehypertensive and hypertensive spontaneously hypertensive rats.
    Böhm M; Castellano M; Paul M; Erdmann E
    J Cardiovasc Pharmacol; 1994 Jun; 23(6):980-7. PubMed ID: 7523791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes of norepinephrine content in kidneys of spontaneously hypertensive and Wistar-Kyoto rats.
    Saiz J; Bellido C; Aguilar R; Sanchez A
    Pharmacology; 1988; 37(6):365-9. PubMed ID: 3244742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-dependent changes in catecholamine turnover in spontaneously hypertensive rats exposed to hypoxia.
    Henley W; Bellush L
    Proc Soc Exp Biol Med; 1995 Apr; 208(4):413-21. PubMed ID: 7700891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Central norepinephrine and angiotensin II contents in the brain regions of spontaneously hypertensive rats (SHR) and the interaction between them].
    Yang K; Ding H; Zhou Q; Luo HY; Wu ZY
    Sheng Li Xue Bao; 1991 Aug; 43(4):345-51. PubMed ID: 1754901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overflow of endogenous norepinephrine from PVH nucleus of DOCA-salt hypertensive rats.
    Qualy JM; Westfall TC
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1549-54. PubMed ID: 7733356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverse blood pressure rhythm of transgenic hypertensive TGR(mREN2)27 rats: role of norepinephrine and expression of tyrosine-hydroxylase and reuptake1-transporter.
    Lemmer B; Schiffer S; Witte K; Gorbey S
    Chronobiol Int; 2005; 22(3):473-88. PubMed ID: 16076648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Content and turnover of noradrenaline in spinal cord and cerebellum of spontaneously hypertensive and stroke-prone rats.
    Howe PR; West MJ; Provis JC; Chalmers JP
    Eur J Pharmacol; 1981 Jul; 73(2-3):123-9. PubMed ID: 6118279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3H-norepinephrine release in caudal artery of spontaneously hypertensive and Wistar-Kyoto rats: effects of altered salt diets.
    Meldrum MJ; Glenton P
    Pharmacology; 1992; 44(1):19-25. PubMed ID: 1313178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of angiotensin II in the regulation of a novel vascular modulator, hepatocyte growth factor (HGF), in experimental hypertensive rats.
    Nakano N; Moriguchi A; Morishita R; Kida I; Tomita N; Matsumoto K; Nakamura T; Higaki J; Ogihara T
    Hypertension; 1997 Dec; 30(6):1448-54. PubMed ID: 9403566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective modulation of noradrenergic neurotransmission by endogenous prostaglandins in aging spontaneously hypertensive rats.
    Jackson EK
    J Pharmacol Exp Ther; 1989 Jul; 250(1):9-21. PubMed ID: 2545868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative studies on catecholamine content and glycogen phosphorylase activity in the myocardium of spontaneously hypertensive and normotensive rats.
    Ilieva T; Petkova I; Popova N; Kiprov D; Tsoncheva A
    Cor Vasa; 1989; 31(1):55-63. PubMed ID: 2524363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdialysis as a tool to assess interstitial norepinephrine levels in adipose tissue of spontaneously hypertensive rats.
    Bergamaschi E; Cabassi A; Mutti A; Franchini I; Borghetti A
    Acta Biomed Ateneo Parmense; 1995; 66(3-4):105-10. PubMed ID: 8578926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunoreactive atrial natriuretic peptide in ventricles, atria, hypothalamus, and plasma of genetically hypertensive rats.
    Ruskoaho H; Leppäluoto J
    Circ Res; 1988 Feb; 62(2):384-94. PubMed ID: 2962785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release of norepinephrine from the paraventricular hypothalamic nucleus of hypertensive rats.
    Qualy JM; Westfall TC
    Am J Physiol; 1988 May; 254(5 Pt 2):H993-1003. PubMed ID: 3364600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP).
    Kato J; Kida O; Nakamura S; Sasaki A; Kodama K; Tanaka K
    Biochem Biophys Res Commun; 1987 Feb; 143(1):316-22. PubMed ID: 2950861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.