These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 9437863)

  • 41. Phospholipase D δ knock-out mutants are tolerant to severe drought stress.
    Distéfano AM; Valiñas MA; Scuffi D; Lamattina L; Ten Have A; García-Mata C; Laxalt AM
    Plant Signal Behav; 2015; 10(11):e1089371. PubMed ID: 26340512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
    Ueda H; Kusaba M
    Plant Physiol; 2015 Sep; 169(1):138-47. PubMed ID: 25979917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves.
    Lee IC; Hong SW; Whang SS; Lim PO; Nam HG; Koo JC
    Plant Cell Physiol; 2011 Apr; 52(4):651-62. PubMed ID: 21382977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves.
    Delessert C; Wilson IW; Van Der Straeten D; Dennis ES; Dolferus R
    Plant Mol Biol; 2004 May; 55(2):165-81. PubMed ID: 15604673
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant.
    Ryu SB; Karlsson BH; Ozgen M; Palta JP
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12717-21. PubMed ID: 11038592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1 (ACS1)-catalysed ACC generation and nitric oxide-associated 1 (NOS1)-dependent NO accumulation in Arabidopsis.
    Lv SF; Jia MZ; Zhang SS; Han S; Jiang J
    Plant Biol (Stuttg); 2019 Jul; 21(4):595-603. PubMed ID: 30734982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo substrates and the contribution of the common phospholipase D, PLDalpha, to wound-induced metabolism of lipids in Arabidopsis.
    Zien CA; Wang C; Wang X; Welti R
    Biochim Biophys Acta; 2001 Feb; 1530(2-3):236-48. PubMed ID: 11239826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.
    Hong JK; Hwang BK
    Planta; 2009 Jan; 229(2):249-59. PubMed ID: 18936963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum.
    Frank W; Munnik T; Kerkmann K; Salamini F; Bartels D
    Plant Cell; 2000 Jan; 12(1):111-24. PubMed ID: 10634911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis.
    Raab S; Drechsel G; Zarepour M; Hartung W; Koshiba T; Bittner F; Hoth S
    Plant J; 2009 Jul; 59(1):39-51. PubMed ID: 19309463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses.
    Yang Z; Tian L; Latoszek-Green M; Brown D; Wu K
    Plant Mol Biol; 2005 Jul; 58(4):585-96. PubMed ID: 16021341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.
    Lu S; Yao S; Wang G; Guo L; Zhou Y; Hong Y; Wang X
    Plant Biotechnol J; 2016 Mar; 14(3):926-37. PubMed ID: 26260942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.
    Hyodo K; Taniguchi T; Manabe Y; Kaido M; Mise K; Sugawara T; Taniguchi H; Okuno T
    PLoS Pathog; 2015 May; 11(5):e1004909. PubMed ID: 26020241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hormone Treatments in Studying Leaf Senescence.
    Zhang Z; Guo Y
    Methods Mol Biol; 2018; 1744():125-132. PubMed ID: 29392662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.
    Zhang K; Xia X; Zhang Y; Gan SS
    Plant J; 2012 Feb; 69(4):667-78. PubMed ID: 22007837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2006 Jan; 6(1):60-70. PubMed ID: 16317577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of microsomal and mitochondrial phospholipase D activities and cloning of a phospholipase D alpha cDNA from strawberry fruits.
    Yuan H; Chen L; Paliyath G; Sullivan A; Murr DP
    Plant Physiol Biochem; 2005 Jun; 43(6):535-47. PubMed ID: 15922610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling.
    Katagiri T; Takahashi S; Shinozaki K
    Plant J; 2001 Jun; 26(6):595-605. PubMed ID: 11489173
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Promoter analysis and expression of a phospholipase D gene from castor bean.
    Xu L; Zheng S; Zheng L; Wang X
    Plant Physiol; 1997 Oct; 115(2):387-95. PubMed ID: 9342861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses.
    Zwack PJ; Robinson BR; Risley MG; Rashotte AM
    Plant Cell Physiol; 2013 Jun; 54(6):971-81. PubMed ID: 23539244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.