These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Macville M; Schröck E; Padilla-Nash H; Keck C; Ghadimi BM; Zimonjic D; Popescu N; Ried T Cancer Res; 1999 Jan; 59(1):141-50. PubMed ID: 9892199 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of high-resolution comparative genomic hybridization (HR-CGH) in detection of chromosomal abnormalities in children with acute leukaemia. Vranova V; Mentzlova D; Oltova A; Linkova V; Zezulkova D; Filkova H; Mendelova D; Sterba J; Kuglik P Neoplasma; 2008; 55(1):23-30. PubMed ID: 18190236 [TBL] [Abstract][Full Text] [Related]
4. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics]. Douet-Guilbert N; Basinko A; Le Bris MJ; Herry A; Morel F; De Braekeleer M Pathol Biol (Paris); 2008 Sep; 56(6):362-7. PubMed ID: 18456432 [TBL] [Abstract][Full Text] [Related]
5. Characterization of complex chromosomal abnormalities in uveal melanoma by fluorescence in situ hybridization, spectral karyotyping, and comparative genomic hybridization. Naus NC; van Drunen E; de Klein A; Luyten GP; Paridaens DA; Alers JC; Ksander BR; Beverloo HB; Slater RM Genes Chromosomes Cancer; 2001 Mar; 30(3):267-73. PubMed ID: 11170284 [TBL] [Abstract][Full Text] [Related]
6. [Delineating a supernumerary marker chromosome by combining several cytogenetic and molecular cytogenetic techniques]. Tan YQ; Di YF; Song YZ; Cheng DH; Li LY; Lu GX Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Aug; 24(4):392-6. PubMed ID: 17680527 [TBL] [Abstract][Full Text] [Related]
7. [From "monocolor" karyotype to "multicolor" karyotype: applications of M-Fish in hematology and oncology]. Jaffray JY; Giollant M; Perissel B; Vago P Bull Cancer; 2002 Feb; 89(2):174-80. PubMed ID: 11888857 [TBL] [Abstract][Full Text] [Related]
8. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Lim G; Karaskova J; Vukovic B; Bayani J; Beheshti B; Bernardini M; Squire JA; Zielenska M Cancer Genet Cytogenet; 2004 Sep; 153(2):158-64. PubMed ID: 15350306 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence in situ hybridization (FISH) in cytogenetics of leukemia. Michalová K Folia Biol (Praha); 1996; 42(6):311-4. PubMed ID: 9158941 [TBL] [Abstract][Full Text] [Related]
10. Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt's lymphoma. Zunino A; Viaggi S; Ottaggio L; Fronza G; Schenone A; Roncella S; Abbondandolo A Haematologica; 2000 Mar; 85(3):250-5. PubMed ID: 10702812 [TBL] [Abstract][Full Text] [Related]
11. The applications of FISH in tumor pathology. Tibiletti MG; Bernasconi B; Dionigi A; Riva C Adv Clin Path; 1999 Oct; 3(4):111-8. PubMed ID: 10936888 [TBL] [Abstract][Full Text] [Related]
13. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). Schoumans J; Ruivenkamp C; Holmberg E; Kyllerman M; Anderlid BM; Nordenskjöld M J Med Genet; 2005 Sep; 42(9):699-705. PubMed ID: 16141005 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization. Tosi S; Giudici G; Rambaldi A; Scherer SW; Bray-Ward P; Dirscherl L; Biondi A; Kearney L Genes Chromosomes Cancer; 1999 Mar; 24(3):213-21. PubMed ID: 10451701 [TBL] [Abstract][Full Text] [Related]
15. Molecular cytogenetics. Kearney L Best Pract Res Clin Haematol; 2001 Sep; 14(3):645-69. PubMed ID: 11640874 [TBL] [Abstract][Full Text] [Related]
16. [Analysis of complex chromosomal aberrations in patients with myelodysplastic syndromes using multiplex fluorescence in situ hybridization combined with whole chromosome painting]. Chen LJ; Li JY; Xiao B; Zhu Y; Liu Q; Pan JL; Qiu HR; Fan L; Zhang SJ; Lu RN; Xu W; Xue YQ Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Dec; 24(6):635-9. PubMed ID: 18067073 [TBL] [Abstract][Full Text] [Related]
17. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization. Uchida K; Oga A; Okafuji M; Mihara M; Kawauchi S; Furuya T; Chochi Y; Ueyama Y; Sasaki K Cancer Genet Cytogenet; 2006 Jun; 167(2):109-16. PubMed ID: 16737909 [TBL] [Abstract][Full Text] [Related]
18. Spectral karyotyping analysis of head and neck squamous cell carcinoma. Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603 [TBL] [Abstract][Full Text] [Related]
19. [Fluorescent in situ hybridization in clinical cytogenetics]. Michalová K Cas Lek Cesk; 1995 Feb; 134(3):73-6. PubMed ID: 7712529 [TBL] [Abstract][Full Text] [Related]
20. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Dave BJ; Sanger WG Semin Pediatr Neurol; 2007 Mar; 14(1):2-6. PubMed ID: 17331878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]