BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 9438392)

  • 1. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres.
    Kang MK; Guo W; Park NH
    Cell Growth Differ; 1998 Jan; 9(1):85-95. PubMed ID: 9438392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid extends the in vitro life span of normal human oral keratinocytes by decreasing p16(INK4A) expression and maintaining telomerase activity.
    You YO; Lee G; Min BM
    Biochem Biophys Res Commun; 2000 Feb; 268(2):268-74. PubMed ID: 10679192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells.
    Kang MK; Kameta A; Shin KH; Baluda MA; Park NH
    J Cell Physiol; 2004 Jun; 199(3):364-70. PubMed ID: 15095283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common genes responsible for differentiation and senescence of human mucosal and epidermal keratinocytes.
    Baek JH; Lee G; Kim SN; Kim JM; Kim M; Chung SC; Min BM
    Int J Mol Med; 2003 Sep; 12(3):319-25. PubMed ID: 12883647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replicative senescence in sheep fibroblasts is a p53 dependent process.
    Davis T; Skinner JW; Faragher RG; Jones CJ; Kipling D
    Exp Gerontol; 2005; 40(1-2):17-26. PubMed ID: 15664728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced senescence in HeLa cervical carcinoma cells containing elevated telomerase activity and extended telomeres.
    Goodwin EC; DiMaio D
    Cell Growth Differ; 2001 Nov; 12(11):525-34. PubMed ID: 11714633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel telomere elongation in an adriamycin-resistant stomach cancer cell line with decreased telomerase activity.
    Kim JH; Lee GE; Kim JC; Lee JH; Chung IK
    Mol Cells; 2002 Apr; 13(2):228-36. PubMed ID: 12018844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immortalization in a normal foreskin fibroblast culture following transduction of cyclin A2 or cdk1 genes in retroviral vectors.
    Luo P; Tresini M; Cristofalo V; Chen X; Saulewicz A; Gray MD; Banker DE; Klingelhutz AL; Ohtsubo M; Takihara Y; Norwood TH
    Exp Cell Res; 2004 Apr; 294(2):406-19. PubMed ID: 15023530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells.
    Wadhwa R; Takano S; Taira K; Kaul SC
    J Gene Med; 2004 Apr; 6(4):439-44. PubMed ID: 15079818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation.
    Harada H; Nakagawa H; Oyama K; Takaoka M; Andl CD; Jacobmeier B; von Werder A; Enders GH; Opitz OG; Rustgi AK
    Mol Cancer Res; 2003 Aug; 1(10):729-38. PubMed ID: 12939398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrence of replicative senescence and elevated expression of p16(INK4A) with subculture-induced but not calcium-induced differentiation in normal human oral keratinocytes.
    Lee G; Park BS; Han SE; Oh JE; You YO; Baek JH; Kim GS; Min BM
    Arch Oral Biol; 2000 Oct; 45(10):809-18. PubMed ID: 10973554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes.
    Fu B; Quintero J; Baker CC
    Cancer Res; 2003 Nov; 63(22):7815-24. PubMed ID: 14633708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells.
    Ramirez RD; Herbert BS; Vaughan MB; Zou Y; Gandia K; Morales CP; Wright WE; Shay JW
    Oncogene; 2003 Jan; 22(3):433-44. PubMed ID: 12545164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic transformation of HPV-immortalized human oral keratinocytes is associated with the genetic instability of cells.
    Shin KH; Tannyhill RJ; Liu X; Park NH
    Oncogene; 1996 Mar; 12(5):1089-96. PubMed ID: 8649801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple pathways to cellular senescence: role of telomerase repressors.
    Oshimura M; Barrett JC
    Eur J Cancer; 1997 Apr; 33(5):710-5. PubMed ID: 9282109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of donor age and telomerase activity with in vitro cell growth and replicative potential for dermal fibroblasts and keratinocytes.
    Ng MH; Aminuddin BS; Hamizah S; Lynette C; Mazlyzam AL; Ruszymah BH
    J Tissue Viability; 2009 Nov; 18(4):109-16. PubMed ID: 19632116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of p21 but not of p16 or p53 in keratinocyte senescence.
    Sayama K; Shirakata Y; Midorikawa K; Hanakawa Y; Hashimoto K
    J Cell Physiol; 1999 Apr; 179(1):40-4. PubMed ID: 10082130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of an alternative mechanism for lengthening of telomeres in somatic cell hybrids.
    Perrem K; Bryan TM; Englezou A; Hackl T; Moy EL; Reddel RR
    Oncogene; 1999 Jun; 18(22):3383-90. PubMed ID: 10362359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disparity between human cell senescence in vitro and lifelong replication in vivo.
    Rubin H
    Nat Biotechnol; 2002 Jul; 20(7):675-81. PubMed ID: 12089551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ha-Ras(G12V) induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction.
    Takaoka M; Harada H; Deramaudt TB; Oyama K; Andl CD; Johnstone CN; Rhoades B; Enders GH; Opitz OG; Nakagawa H
    Oncogene; 2004 Sep; 23(40):6760-8. PubMed ID: 15273725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.