BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9438442)

  • 1. Mapping of lateral geniculate nucleus activation during visual stimulation in human brain using fMRI.
    Chen W; Kato T; Zhu XH; Strupp J; Ogawa S; Ugurbil K
    Magn Reson Med; 1998 Jan; 39(1):89-96. PubMed ID: 9438442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional imaging of the human lateral geniculate nucleus and pulvinar.
    Kastner S; O'Connor DH; Fukui MM; Fehd HM; Herwig U; Pinsk MA
    J Neurophysiol; 2004 Jan; 91(1):438-48. PubMed ID: 13679404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
    Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T
    Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of activation sizes between lateral geniculate nucleus and primary visual cortex in humans.
    Chen W; Zhu XH
    Magn Reson Med; 2001 Feb; 45(2):202-5. PubMed ID: 11180426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human primary visual cortex and lateral geniculate nucleus activation during visual imagery.
    Chen W; Kato T; Zhu XH; Ogawa S; Tank DW; Ugurbil K
    Neuroreport; 1998 Nov; 9(16):3669-74. PubMed ID: 9858377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of voxel size on detection of lateral geniculate nucleus activation in functional magnetic resonance imaging.
    Miki A; Liu CS; Liu GT
    Jpn J Ophthalmol; 2004; 48(6):558-64. PubMed ID: 15592780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual activation in functional magnetic resonance imaging at very high field (4 Tesla).
    Miki A; Liu GT; Raz J; Englander SA; Bonhomme GR; Aleman DO; Modestino EJ; Liu CS; Haselgrove JC
    J Neuroophthalmol; 2001 Mar; 21(1):8-11. PubMed ID: 11315986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotopic mapping of lateral geniculate nucleus in humans using functional magnetic resonance imaging.
    Chen W; Zhu XH; Thulborn KR; Ugurbil K
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2430-4. PubMed ID: 10051659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI.
    Lewis LD; Setsompop K; Rosen BR; Polimeni JR
    Neuroimage; 2018 Nov; 181():279-291. PubMed ID: 29935223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI of visual system activation in the conscious rabbit.
    Wyrwicz AM; Chen N; Li L; Weiss C; Disterhoft JF
    Magn Reson Med; 2000 Sep; 44(3):474-8. PubMed ID: 10975901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional imaging of the monkey brain.
    Logothetis NK; Guggenberger H; Peled S; Pauls J
    Nat Neurosci; 1999 Jun; 2(6):555-62. PubMed ID: 10448221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation.
    Lau C; Zhou IY; Cheung MM; Chan KC; Wu EX
    PLoS One; 2011 Apr; 6(4):e18914. PubMed ID: 21559482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: insights into the neural basis of fMRI.
    Yen CC; Fukuda M; Kim SG
    Neuroimage; 2011 Sep; 58(1):82-90. PubMed ID: 21704712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study.
    Schneider KA; Richter MC; Kastner S
    J Neurosci; 2004 Oct; 24(41):8975-85. PubMed ID: 15483116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential cortical and subcortical visual processing with eyes shut.
    Cicero NG; Klimova M; Lewis LD; Ling S
    J Neurophysiol; 2024 Jul; 132(1):54-60. PubMed ID: 38810261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the Pulvinar and Lateral Geniculate Nucleus to the Control of Visually Guided Saccades in Blindsight Monkeys.
    Takakuwa N; Isa K; Onoe H; Takahashi J; Isa T
    J Neurosci; 2021 Feb; 41(8):1755-1768. PubMed ID: 33443074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Figure-Ground Modulation in the Human Lateral Geniculate Nucleus Is Distinguishable from Top-Down Attention.
    Poltoratski S; Maier A; Newton AT; Tong F
    Curr Biol; 2019 Jun; 29(12):2051-2057.e3. PubMed ID: 31178323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.
    Mullen KT; Thompson B; Hess RF
    J Vis; 2010 Nov; 10(13):13. PubMed ID: 21106678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation.
    Sylvester R; Haynes JD; Rees G
    Curr Biol; 2005 Jan; 15(1):37-41. PubMed ID: 15649362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.