BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9438841)

  • 1. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity.
    Wang Y; DuBois JL; Hedman B; Hodgson KO; Stack TD
    Science; 1998 Jan; 279(5350):537-40. PubMed ID: 9438841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking an enzyme in look and deed.
    Service RF
    Science; 1998 Jan; 279(5350):479-80. PubMed ID: 9454346
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status.
    Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL
    Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen atom abstraction by Cu(II)- and Zn(II)-phenoxyl radical complexes, models for the active form of galactose oxidase.
    Taki M; Kumei H; Itoh S; Fukuzumi S
    J Inorg Biochem; 2000 Jan; 78(1):1-5. PubMed ID: 10714699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The radical chemistry of galactose oxidase.
    Whittaker JW
    Arch Biochem Biophys; 2005 Jan; 433(1):227-39. PubMed ID: 15581579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose oxidase model: biomimetic enantiomer-differentiating oxidation of alcohols by a chiral copper complex.
    Alamsetti SK; Mannam S; Mutupandi P; Sekar G
    Chemistry; 2009; 15(5):1086-90. PubMed ID: 19107892
    [No Abstract]   [Full Text] [Related]  

  • 9. Combinatorial approaches to functional models for galactose oxidase.
    Berkessel A; Dousset M; Bulat S; Glaubitz K
    Biol Chem; 2005 Oct; 386(10):1035-41. PubMed ID: 16218875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen.
    Arion VB; Platzer S; Rapta P; Machata P; Breza M; Vegh D; Dunsch L; Telser J; Shova S; Mac Leod TC; Pombeiro AJ
    Inorg Chem; 2013 Jul; 52(13):7524-40. PubMed ID: 23758222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidatively robust monophenolate-copper(II) complexes as potential models of galactose oxidase.
    Gebbink RJ; Watanabe M; Pratt RC; Stack TD
    Chem Commun (Camb); 2003 Mar; (5):630-1. PubMed ID: 12669859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactose oxidase models: tuning the properties of CuII-phenoxyl radicals.
    Philibert A; Thomas F; Philouze C; Hamman S; Saint-Aman E; Pierre JL
    Chemistry; 2003 Aug; 9(16):3803-12. PubMed ID: 12916104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA.
    Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the one-electron oxidized Cu(II)-salen complexes with a side chain aromatic ring: the effect of the indole ring on the Cu(II)-phenoxyl radical species.
    Oshita H; Yoshimura T; Mori S; Tani F; Shimazaki Y; Yamauchi O
    J Biol Inorg Chem; 2018 Jan; 23(1):51-59. PubMed ID: 29218633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-Depleted Calixarenes as Ligands for Molecular Models of Galactose Oxidase.
    Keck M; Hoof S; Herwig C; Vigalok A; Limberg C
    Chemistry; 2019 Oct; 25(58):13285-13289. PubMed ID: 31441974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission.
    Li J; Davis I; Griffith WP; Liu A
    J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, X-ray crystallography, spectroscopic characterization and spectroscopic/electrochemical evidence of formation of phenoxy free radical in active center analogs of galactose oxidase - [Cu(Salgly)H₂O] and [Cu(Salphenylalanine)H₂O].
    Das B; Medhi OK
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():352-7. PubMed ID: 23274262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu(I)-dependent biogenesis of the galactose oxidase redox cofactor.
    Whittaker MM; Whittaker JW
    J Biol Chem; 2003 Jun; 278(24):22090-101. PubMed ID: 12672814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.