BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9438863)

  • 81. Structural insights into AGC kinase inhibition.
    Breitenlechner C; Gassel M; Engh R; Bossemeyer D
    Oncol Res; 2004; 14(6):267-78. PubMed ID: 15206489
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Dynamics connect substrate recognition to catalysis in protein kinase A.
    Masterson LR; Cheng C; Yu T; Tonelli M; Kornev A; Taylor SS; Veglia G
    Nat Chem Biol; 2010 Nov; 6(11):821-8. PubMed ID: 20890288
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Role of N-terminal myristylation in the structure and regulation of cAMP-dependent protein kinase.
    Bastidas AC; Deal MS; Steichen JM; Keshwani MM; Guo Y; Taylor SS
    J Mol Biol; 2012 Sep; 422(2):215-29. PubMed ID: 22617327
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Functional malleability of the carboxyl-terminal tail in protein kinase A.
    Chestukhin A; Litovchick L; Schourov D; Cox S; Taylor SS; Shaltiel S
    J Biol Chem; 1996 Apr; 271(17):10175-82. PubMed ID: 8626579
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Crystal structures of the S6K1 kinase domain in complexes with inhibitors.
    Niwa H; Mikuni J; Sasaki S; Tomabechi Y; Honda K; Ikeda M; Ohsawa N; Wakiyama M; Handa N; Shirouzu M; Honma T; Tanaka A; Yokoyama S
    J Struct Funct Genomics; 2014 Sep; 15(3):153-64. PubMed ID: 25078151
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft.
    Taylor SS; Radzio-Andzelm E; Madhusudan ; Cheng X; Ten Eyck L; Narayana N
    Pharmacol Ther; 1999; 82(2-3):133-41. PubMed ID: 10454192
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A method for counting active sites of cyclic AMP-dependent protein kinase.
    McClure GD; Qamar R; Cook PF
    J Enzyme Inhib; 1993; 7(2):151-7. PubMed ID: 7509870
    [TBL] [Abstract][Full Text] [Related]  

  • 88. On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine.
    Tanramluk D; Schreyer A; Pitt WR; Blundell TL
    Chem Biol Drug Des; 2009 Jul; 74(1):16-24. PubMed ID: 19519740
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Evaluation of docking strategies for virtual screening of compound databases: cAMP-dependent serine/threonine kinase as an example.
    Godden JW; Stahura F; Bajorath J
    J Mol Graph Model; 1998 Jun; 16(3):139-43, 165. PubMed ID: 10434253
    [TBL] [Abstract][Full Text] [Related]  

  • 90. cAMP-dependent protein kinase and the protein kinase family.
    Taylor SS; Knighton DR; Zheng J; Ten Eyck LF; Sowadski JM
    Faraday Discuss; 1992; (93):143-52. PubMed ID: 1290929
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dynamics of cAMP-dependent protein kinase.
    Johnson DA; Akamine P; Radzio-Andzelm E; Madhusudan M; Taylor SS
    Chem Rev; 2001 Aug; 101(8):2243-70. PubMed ID: 11749372
    [No Abstract]   [Full Text] [Related]  

  • 92. Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase's enzymatic cycle.
    Wang Y; V S M; Kim J; Li G; Ahuja LG; Aoto P; Taylor SS; Veglia G
    Nat Commun; 2019 Feb; 10(1):799. PubMed ID: 30778078
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Allosteric linkers in cAMP signalling.
    Akimoto M; Moleschi K; Boulton S; VanSchouwen B; Selvaratnam R; Taylor SS; Melacini G
    Biochem Soc Trans; 2014 Feb; 42(1):139-44. PubMed ID: 24450641
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A.
    Bastidas AC; Pierce LC; Walker RC; Johnson DA; Taylor SS
    Biochemistry; 2013 Sep; 52(37):6368-79. PubMed ID: 24003983
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ligand-induced global transitions in the catalytic domain of protein kinase A.
    Hyeon C; Jennings PA; Adams JA; Onuchic JN
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3023-8. PubMed ID: 19204278
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Structure-based rational design of staurosporine-based fluorescent probe with broad-ranging kinase affinity for kinase panel application.
    Hirozane Y; Toyofuku M; Yogo T; Tanaka Y; Sameshima T; Miyahisa I; Yoshikawa M
    Bioorg Med Chem Lett; 2019 Nov; 29(21):126641. PubMed ID: 31526603
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Designing specific protein kinase inhibitors: insights from computer simulations and comparative sequence/structure analysis.
    Gould C; Wong CF
    Pharmacol Ther; 2002; 93(2-3):169-78. PubMed ID: 12191609
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Vicinity analysis: a methodology for the identification of similar protein active sites.
    McGready A; Stevens A; Lipkin M; Hudson BD; Whitley DC; Ford MG
    J Mol Model; 2009 May; 15(5):489-98. PubMed ID: 19085023
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Diamondoid Amino Acid-Based Peptide Kinase A Inhibitor Analogues.
    Müller J; Kirschner RA; Berndt JP; Wulsdorf T; Metz A; Hrdina R; Schreiner PR; Geyer A; Klebe G
    ChemMedChem; 2019 Mar; 14(6):663-672. PubMed ID: 30677243
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Conservation, variability and the modeling of active protein kinases.
    Knight JD; Qian B; Baker D; Kothary R
    PLoS One; 2007 Oct; 2(10):e982. PubMed ID: 17912359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.