These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9439001)
21. Sequence similarities in the genes encoding polychlorinated biphenyl degradation by Pseudomonas strain LB400 and Alcaligenes eutrophus H850. Yates JR; Mondello FJ J Bacteriol; 1989 Mar; 171(3):1733-5. PubMed ID: 2493455 [TBL] [Abstract][Full Text] [Related]
22. Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. Mondello FJ J Bacteriol; 1989 Mar; 171(3):1725-32. PubMed ID: 2493454 [TBL] [Abstract][Full Text] [Related]
23. Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Beaudette LA; Ward OP; Pickard MA; Fedorak PM Lett Appl Microbiol; 2000 Feb; 30(2):155-60. PubMed ID: 10736020 [TBL] [Abstract][Full Text] [Related]
24. Highly conserved coding sequences in polychlorinated biphenyl (PCB)-degraders of Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715. Furukawa K; Nakagawa K; Yuyama N; Sato A; Kokean Y; Kato H; Yamashita S; Hayase N; Nishikawa S; Taira K Nucleic Acids Symp Ser; 1991; (25):115-6. PubMed ID: 1842046 [TBL] [Abstract][Full Text] [Related]
25. Coping with polychlorinated biphenyl (PCB) toxicity: Physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Parnell JJ; Park J; Denef V; Tsoi T; Hashsham S; Quensen J; Tiedje JM Appl Environ Microbiol; 2006 Oct; 72(10):6607-14. PubMed ID: 17021212 [TBL] [Abstract][Full Text] [Related]
26. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Parnell JJ; Denef VJ; Park J; Tsoi T; Tiedje JM Biodegradation; 2010 Feb; 21(1):147-56. PubMed ID: 19672561 [TBL] [Abstract][Full Text] [Related]
27. Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs. Rodrigues JL; Maltseva OV; Tsoi TV; Helton RR; Quensen JF; Fukuda M; Tiedje JM Environ Sci Technol; 2001 Feb; 35(4):663-8. PubMed ID: 11349275 [TBL] [Abstract][Full Text] [Related]
28. Transfer and expression of PCB-degradative genes into heavy metal resistant Alcaligenes eutrophus strains. Springael D; Diels L; Mergeay M Biodegradation; 1994 Dec; 5(3-4):343-57. PubMed ID: 7765842 [TBL] [Abstract][Full Text] [Related]
30. Investigation into PCB biodegradation using uniformly 14C-labelled dichlorobiphenyl. Kubátová A; Matucha M; Erbanová P; Novotný C; Vlasáková V; Sasek V Isotopes Environ Health Stud; 1998; 34(4):325-34. PubMed ID: 10089593 [TBL] [Abstract][Full Text] [Related]
31. Oxidative dehalogenation and mineralization of polychlorinated biphenyls by a resuscitated strain Streptococcus sp. SPC0. Lin Q; Zhou X; Zhang S; Gao J; Xie M; Tao L; Sun F; Shen C; Hashmi MZ; Su X Environ Res; 2022 May; 207():112648. PubMed ID: 34990605 [TBL] [Abstract][Full Text] [Related]
32. Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2,4,4'-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp. strain IA3-A. Lambo AJ; Patel TR J Appl Microbiol; 2007 May; 102(5):1318-29. PubMed ID: 17448167 [TBL] [Abstract][Full Text] [Related]
34. Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors. Gomes BC; Adorno MA; Okada DY; Delforno TP; Lima Gomes PC; Sakamoto IK; Varesche MB Biodegradation; 2014 Nov; 25(6):797-810. PubMed ID: 25104219 [TBL] [Abstract][Full Text] [Related]
35. Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. McKay DB; Seeger M; Zielinski M; Hofer B; Timmis KN J Bacteriol; 1997 Mar; 179(6):1924-30. PubMed ID: 9068637 [TBL] [Abstract][Full Text] [Related]
36. Isolation and genomic characterization of Zhu DH; Nie FH; Song QL; Wei W; Zhang M; Hu Y; Lin HY; Kang DJ; Chen ZB; Chen JJ Environ Technol; 2023 Oct; 44(24):3656-3666. PubMed ID: 35441572 [TBL] [Abstract][Full Text] [Related]
37. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Wittich RM; Wolff P Microbiology (Reading); 2007 Jan; 153(Pt 1):186-95. PubMed ID: 17185547 [TBL] [Abstract][Full Text] [Related]
38. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Saavedra JM; Acevedo F; González M; Seeger M Appl Microbiol Biotechnol; 2010 Jul; 87(4):1543-54. PubMed ID: 20414654 [TBL] [Abstract][Full Text] [Related]
39. Novel approach to the improvement of biphenyl and polychlorinated biphenyl degradation activity: promoter implantation by homologous recombination. Ohtsubo Y; Shimura M; Delawary M; Kimbara K; Takagi M; Kudo T; Ohta A; Nagata Y Appl Environ Microbiol; 2003 Jan; 69(1):146-53. PubMed ID: 12513989 [TBL] [Abstract][Full Text] [Related]
40. Use of potassium tellurite for testing the survival and viability of Pseudomonas pseudoalcaligenes KF707 in soil microcosms contaminated with polychlorinated biphenyls. Zanaroli G; Fedi S; Carnevali M; Fava F; Zannoni D Res Microbiol; 2002; 153(6):353-60. PubMed ID: 12234009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]