These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 9439444)

  • 1. The relationship between uremic toxins and symptoms in older men and women with advanced chronic kidney disease.
    Massy ZA; Chesnaye NC; Larabi IA; Dekker FW; Evans M; Caskey FJ; Torino C; Porto G; Szymczak M; Drechsler C; Wanner C; Jager KJ; Alvarez JC;
    Clin Kidney J; 2022 Apr; 15(4):798-807. PubMed ID: 35371454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential interactions between uraemic toxins and drugs: an application in kidney transplant recipients treated with calcineurin inhibitors.
    André C; Choukroun G; Bennis Y; Kamel S; Lemaire-Hurtel AS; Masmoudi K; Bodeau S; Liabeuf S
    Nephrol Dial Transplant; 2022 Oct; 37(11):2284-2292. PubMed ID: 33783543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drugs Commonly Applied to Kidney Patients May Compromise Renal Tubular Uremic Toxins Excretion.
    Mihaila SM; Faria J; Stefens MFJ; Stamatialis D; Verhaar MC; Gerritsen KGF; Masereeuw R
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32545617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease.
    Santana Machado T; Cerini C; Burtey S
    Toxins (Basel); 2019 Apr; 11(4):. PubMed ID: 30959953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uremic toxins are conditional danger- or homeostasis-associated molecular patterns.
    Sun Y; Johnson C; Zhou J; Wang L; Li YF; Lu Y; Nanayakkara G; Fu H; Shao Y; Sanchez C; Yang WY; Wang X; Choi ET; Li R; Wang H; Yang XF
    Front Biosci (Landmark Ed); 2018 Jan; 23(2):348-387. PubMed ID: 28930551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study.
    Tao X; Thijssen S; Kotanko P; Ho CH; Henrie M; Stroup E; Handelman G
    Sci Rep; 2016 Mar; 6():23389. PubMed ID: 27001248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Purpose Containers? Lipid-Binding Protein - Drug Interactions.
    Beringhelli T; Gianazza E; Maggioni D; Scanu S; Parravicini C; Sensi C; Monaco HL; Eberini I
    PLoS One; 2015; 10(7):e0132096. PubMed ID: 26167932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding affinity and capacity for the uremic toxin indoxyl sulfate.
    Devine E; Krieter DH; Rüth M; Jankovski J; Lemke HD
    Toxins (Basel); 2014 Jan; 6(2):416-29. PubMed ID: 24469432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic clearance, but not gut availability, of erythromycin is altered in patients with end-stage renal disease.
    Sun H; Frassetto LA; Huang Y; Benet LZ
    Clin Pharmacol Ther; 2010 Apr; 87(4):465-72. PubMed ID: 20090676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usefulness of competitive inhibitors of protein binding for improving the pharmacokinetics of 186Re-MAG3-conjugated bisphosphonate (186Re-MAG3-HBP), an agent for treatment of painful bone metastases.
    Ogawa K; Mukai T; Kawai K; Takamura N; Hanaoka H; Hashimoto K; Shiba K; Mori H; Saji H
    Eur J Nucl Med Mol Imaging; 2009 Jan; 36(1):115-21. PubMed ID: 18709369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do fatty acids cause allosteric binding of drugs to human serum albumin?
    Chuang VT; Otagiri M
    Pharm Res; 2002 Oct; 19(10):1458-64. PubMed ID: 12425462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin.
    Sakai T; Yamasaki K; Sako T; Kragh-Hansen U; Suenaga A; Otagiri M
    Pharm Res; 2001 Apr; 18(4):520-4. PubMed ID: 11451040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of uremic toxins and fatty acids on serum protein binding of furosemide: possible mechanism of the binding defect in uremia.
    Takamura N; Maruyama T; Otagiri M
    Clin Chem; 1997 Dec; 43(12):2274-80. PubMed ID: 9439444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased bilirubin-binding capacity in uremic serum caused by an accumulation of furan dicarboxylic acid.
    Tsutsumi Y; Maruyama T; Takadate A; Shimada H; Otagiri M
    Nephron; 2000 May; 85(1):60-4. PubMed ID: 10773757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a Clinically Relevant Uremic Toxin in Haemodialysis Patients?
    Luce M; Bouchara A; Pastural M; Granjon S; Szelag JC; Laville M; Arkouche W; Fouque D; Soulage CO; Koppe L
    Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29783628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ionic Strength, pH and Chemical Displacers on the Percentage Protein Binding of Protein-Bound Uremic Toxins.
    Shi Y; Tian H; Wang Y; Shen Y; Zhu Q; Ding F
    Blood Purif; 2019; 47(4):351-360. PubMed ID: 30562731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of protein-bound uraemic toxins by haemodialysis.
    Niwa T
    Blood Purif; 2013; 35 Suppl 2():20-5. PubMed ID: 23676831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-bound uremic retention solutes.
    Brunet P; Dou L; Cerini C; Berland Y
    Adv Ren Replace Ther; 2003 Oct; 10(4):310-20. PubMed ID: 14681860
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.