These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 9439995)

  • 21. Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction.
    Hsieh MJ; Luo R
    Proteins; 2004 Aug; 56(3):475-86. PubMed ID: 15229881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution refinement of orthorhombic bovine pancreatic phospholipase A2.
    Sekar K; Sundaralingam M
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):46-50. PubMed ID: 10089393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of the Y52F/Y73F double mutant of phospholipase A2: increased hydrophobic interactions of the phenyl groups compensate for the disrupted hydrogen bonds of the tyrosines.
    Sekharudu C; Ramakrishnan B; Huang B; Jiang RT; Dupureur CM; Tsai MD; Sundaralingam M
    Protein Sci; 1992 Dec; 1(12):1585-94. PubMed ID: 1304890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Can the local energy minimization refine the PDB structures of different resolution universally?].
    Godzi MG; Gromova AP; Oferkin IV; Mironov PV
    Biofizika; 2009; 54(4):622-9. PubMed ID: 19795782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of an acidic phospholipase A2 from the venom of Agkistrodon halys pallas at 2.0 A resolution.
    Wang XQ; Yang J; Gui LL; Lin ZJ; Chen YC; Zhou YC
    J Mol Biol; 1996 Feb; 255(5):669-76. PubMed ID: 8636969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray structure at 1.76 A resolution of a polypeptide phospholipase A2 inhibitor.
    Devedjiev Y; Popov A; Atanasov B; Bartunik HD
    J Mol Biol; 1997 Feb; 266(1):160-72. PubMed ID: 9054978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crepe-ribbon representation for protein structures: comparison of phospholipases A2.
    Pattabiraman N; Ward KB
    J Mol Graph; 1991 Mar; 9(1):3-10, 33. PubMed ID: 2018754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dielectric-layer hybrid solvation model with spheroidal cavities in biomolecular simulations.
    Xue C; Deng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016701. PubMed ID: 20365496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of quinacrine to acidic phospholipids and pancreatic phospholipase A2. Effects on the catalytic activity of the enzyme.
    Mustonen P; Lehtonen JY; Kinnunen PK
    Biochemistry; 1998 Sep; 37(35):12051-7. PubMed ID: 9724516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function.
    Garden DP; Zhorov BS
    J Comput Aided Mol Des; 2010 Feb; 24(2):91-105. PubMed ID: 20119653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation of highly charged proteins: comparison of the particle-particle particle-mesh and reaction field methods for the calculation of electrostatic interactions.
    Gargallo R; Hünenberger PH; Avilés FX; Oliva B
    Protein Sci; 2003 Oct; 12(10):2161-72. PubMed ID: 14500874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor.
    Russell ST; Warshel A
    J Mol Biol; 1985 Sep; 185(2):389-404. PubMed ID: 2414450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A descriptive analysis of populations of three-dimensional structures calculated from primary sequences of proteins by OSIRIS.
    Benhabilès N; Gallet X; Thomas-Soumarmon A; Brasseur R
    J Comput Biol; 1998; 5(2):351-66. PubMed ID: 9672837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular modeling and dynamics of neuropeptide Y.
    MacKerell AD
    J Comput Aided Mol Des; 1988 Apr; 2(1):55-63. PubMed ID: 3199149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STEP--a trial-and-error procedure for crystal structure determination. II. The determination of two small protein structures.
    Lipu L; Jian Y; Xiaofeng Z; Yonggeng H
    Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):828-33. PubMed ID: 9757097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A modified X-Y method.
    Chen Y; Su WP
    Acta Crystallogr A; 2001 Nov; 57(Pt 6):733-5. PubMed ID: 11679706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Minimization of polypeptide energy, iii. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidin-s.
    Scott RA; Vanderkooi G; Tuttle RW; Shames PM; Scheraga HA
    Proc Natl Acad Sci U S A; 1967 Dec; 58(6):2204-11. PubMed ID: 16591582
    [No Abstract]   [Full Text] [Related]  

  • 39. Spatially constrained minimization of macromolecules.
    Bruccoleri RE; Karplus M
    J Comput Chem; 1986 Apr; 7(2):165-175. PubMed ID: 29160574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the accuracy of the free-energy-minimization method.
    Najafabadi R; Srolovitz DJ
    Phys Rev B Condens Matter; 1995 Oct; 52(13):9229-9241. PubMed ID: 9979965
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.