These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9440342)

  • 1. Evaluation of the effect of speech-rate slowing on speech intelligibility in noise using a simulation of cochlear hearing loss.
    Nejime Y; Moore BC
    J Acoust Soc Am; 1998 Jan; 103(1):572-6. PubMed ID: 9440342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise.
    Nejime Y; Moore BC
    J Acoust Soc Am; 1997 Jul; 102(1):603-15. PubMed ID: 9228821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the effects of loudness recruitment and threshold elevation on the intelligibility of speech in quiet and in a background of speech.
    Moore BC; Glasberg BR
    J Acoust Soc Am; 1993 Oct; 94(4):2050-62. PubMed ID: 8227747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of slow-acting wide dynamic range compression on measures of intelligibility and ratings of speech quality in simulated-loss listeners.
    Rosengard PS; Payton KL; Braida LD
    J Speech Lang Hear Res; 2005 Jun; 48(3):702-14. PubMed ID: 16197282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the effects of loudness recruitment on the intelligibility of speech in noise.
    Moore BC; Glasberg BR; Vickers DA
    Br J Audiol; 1995 Jun; 29(3):131-43. PubMed ID: 8574199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality, and response times.
    Baer T; Moore BC; Gatehouse S
    J Rehabil Res Dev; 1993; 30(1):49-72. PubMed ID: 8263829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of real and simulated hearing impairment in subjects with unilateral and bilateral cochlear hearing loss.
    Moore BC; Vickers DA; Glasberg BR; Baer T
    Br J Audiol; 1997 Aug; 31(4):227-45. PubMed ID: 9307819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response.
    Zekveld AA; Kramer SE; Festen JM
    Ear Hear; 2011; 32(4):498-510. PubMed ID: 21233711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people.
    Peters RW; Moore BC; Baer T
    J Acoust Soc Am; 1998 Jan; 103(1):577-87. PubMed ID: 9440343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligibility of modified speech for young listeners with normal and impaired hearing.
    Uchanski RM; Geers AE; Protopapas A
    J Speech Lang Hear Res; 2002 Oct; 45(5):1027-38. PubMed ID: 12381058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceived listening effort and speech intelligibility in reverberation and noise for hearing-impaired listeners.
    Schepker H; Haeder K; Rennies J; Holube I
    Int J Audiol; 2016 Dec; 55(12):738-747. PubMed ID: 27627181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech perception in individuals with auditory neuropathy.
    Zeng FG; Liu S
    J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Villchur revisited: another look at automatic gain control simulation of recruiting hearing loss.
    Duchnowski P; Zurek PM
    J Acoust Soc Am; 1995 Dec; 98(6):3170-81. PubMed ID: 8550941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners.
    Johannesen PT; Pérez-González P; Kalluri S; Blanco JL; Lopez-Poveda EA
    Trends Hear; 2016 Sep; 20():. PubMed ID: 27604779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the intelligibility of time-compressed speech and speech in noise in young and elderly listeners.
    Versfeld NJ; Dreschler WA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):401-8. PubMed ID: 11831813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region.
    Summers V; Cord MT
    J Acoust Soc Am; 2007 Aug; 122(2):1130-7. PubMed ID: 17672659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery.
    Van Esch TE; Dreschler WA
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26647417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.