These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 9440493)
1. The CSF accumulator: its role in the central nervous system and implications for advancing hydrocephalus shunt technology. Magram G; Liakos AM Pediatr Neurosurg; 1997 May; 26(5):236-46. PubMed ID: 9440493 [TBL] [Abstract][Full Text] [Related]
2. The CSF accumulator. Magram G; Liakos AM Neurol Res; 2000 Jan; 22(1):4-18. PubMed ID: 10672575 [TBL] [Abstract][Full Text] [Related]
3. Cerebrospinal fluid flow through an implanted shunt. Magram G; Liakos AM Neurol Res; 2000 Jan; 22(1):43-50. PubMed ID: 10672580 [TBL] [Abstract][Full Text] [Related]
4. CSF outflow resistance as predictor of shunt function. A long-term study. Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771 [TBL] [Abstract][Full Text] [Related]
5. Changes in cerebrospinal fluid hydrodynamics following endoscopic third ventriculostomy for shunt-dependent noncommunicating hydrocephalus. Nishiyama K; Mori H; Tanaka R J Neurosurg; 2003 May; 98(5):1027-31. PubMed ID: 12744362 [TBL] [Abstract][Full Text] [Related]
6. Hydrocephalus: the zero ICP ventricle shunt (ZIPS) to control gravity shunt flow. A clinical study in 56 patients. Foltz EL; Blanks J; Meyer R Childs Nerv Syst; 1994 Jan; 10(1):43-8. PubMed ID: 8194062 [TBL] [Abstract][Full Text] [Related]
7. Differential Pressure Shunt for Simultaneous Diversion of Ventricular Fluid and Extracerebral Fluid. Craig D; Winston KR; Folzenlogen Z; Beauchamp KA Pediatr Neurosurg; 2018; 53(1):13-17. PubMed ID: 28934739 [TBL] [Abstract][Full Text] [Related]
8. [Magnetic resonance tomographic imaging of pulsatile CSF movement in communicating hydrocephalus before and after shunt placement]. Goldmann A; Kunz U; Rotermund G; Friedrich JM; Schnarkowski P Rofo; 1992 Dec; 157(6):555-60. PubMed ID: 1457791 [TBL] [Abstract][Full Text] [Related]
9. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing. Venkataraman P; Browd SR; Lutz BR J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135 [TBL] [Abstract][Full Text] [Related]
10. Shunted hydrocephalus: normal upright ICP by CSF gravity-flow control. A clinical study in young adults. Foltz EL; Blanks J; Meyer R Surg Neurol; 1993 Mar; 39(3):210-7. PubMed ID: 8456385 [TBL] [Abstract][Full Text] [Related]
11. CSF shunt physics: factors influencing inshunt CSF flow. Kadowaki C; Hara M; Numoto M; Takeuchi K; Saito I Childs Nerv Syst; 1995 Apr; 11(4):203-6. PubMed ID: 7621480 [TBL] [Abstract][Full Text] [Related]
12. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
13. Prior CSF shunting increases the risk of endoscopic third ventriculostomy failure in the treatment of obstructive hydrocephalus in adults. Woodworth G; McGirt MJ; Thomas G; Williams MA; Rigamonti D Neurol Res; 2007 Jan; 29(1):27-31. PubMed ID: 17427271 [TBL] [Abstract][Full Text] [Related]
14. The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Malm J; Kristensen B; Karlsson T; Fagerlund M; Elfverson J; Ekstedt J Arch Neurol; 1995 Aug; 52(8):783-9. PubMed ID: 7639630 [TBL] [Abstract][Full Text] [Related]
15. Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity. Brydon HL; Hayward R; Harkness W; Bayston R Br J Neurosurg; 1995; 9(5):639-44. PubMed ID: 8561936 [TBL] [Abstract][Full Text] [Related]
16. Comparison between classic-differential and automatic shunt functioning on the basis of infusion tests. Czosnyka M; Maksymowicz W; Batorski L; Koszewski W; Czosnyka Z Acta Neurochir (Wien); 1990; 106(1-2):1-8. PubMed ID: 2270783 [TBL] [Abstract][Full Text] [Related]
17. A cerebrospinal fluid shunt: a theoretical concept. Magram G Childs Nerv Syst; 1995 Oct; 11(10):604-6. PubMed ID: 8556728 [TBL] [Abstract][Full Text] [Related]
18. The CSF accumulator: its role in the central nervous system and implications for advancing hydrocephalus shunt technology. Magram G Pediatr Neurosurg; 1997 Nov; 27(5):277. PubMed ID: 9620008 [No Abstract] [Full Text] [Related]
19. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation. Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991 [TBL] [Abstract][Full Text] [Related]
20. CSF shunt removal in children with hydrocephalus. Iannelli A; Rea G; Di Rocco C Acta Neurochir (Wien); 2005 May; 147(5):503-7; discussion 507. PubMed ID: 15838593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]