These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9440509)

  • 1. Growth-independent regulation of CLN3 mRNA levels by nutrients in Saccharomyces cerevisiae.
    Parviz F; Heideman W
    J Bacteriol; 1998 Jan; 180(2):225-30. PubMed ID: 9440509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae.
    Parviz F; Hall DD; Markwardt DD; Heideman W
    J Bacteriol; 1998 Sep; 180(17):4508-15. PubMed ID: 9721289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae.
    Hall DD; Markwardt DD; Parviz F; Heideman W
    EMBO J; 1998 Aug; 17(15):4370-8. PubMed ID: 9687505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins.
    Tyers M; Tokiwa G; Futcher B
    EMBO J; 1993 May; 12(5):1955-68. PubMed ID: 8387915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E.
    Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of gene expression by glucose in Saccharomyces cerevisiae: a role for ADA2 and ADA3/NGG1.
    Wu M; Newcomb L; Heideman W
    J Bacteriol; 1999 Aug; 181(16):4755-60. PubMed ID: 10438741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae.
    Hubler L; Bradshaw-Rouse J; Heideman W
    Mol Cell Biol; 1993 Oct; 13(10):6274-82. PubMed ID: 8413227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosage suppressors of the dominant G1 cyclin mutant CLN3-2: identification of a yeast gene encoding a putative RNA/ssDNA binding protein.
    Sugimoto K; Matsumoto K; Kornberg RD; Reed SI; Wittenberg C
    Mol Gen Genet; 1995 Oct; 248(6):712-8. PubMed ID: 7476874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway.
    Jeoung DI; Oehlen LJ; Cross FR
    Mol Cell Biol; 1998 Jan; 18(1):433-41. PubMed ID: 9418890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast.
    Tokiwa G; Tyers M; Volpe T; Futcher B
    Nature; 1994 Sep; 371(6495):342-5. PubMed ID: 8090204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2.
    Di Como CJ; Chang H; Arndt KT
    Mol Cell Biol; 1995 Apr; 15(4):1835-46. PubMed ID: 7891677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae.
    Newcomb LL; Hall DD; Heideman W
    Mol Cell Biol; 2002 Mar; 22(5):1607-14. PubMed ID: 11839825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose regulation of Saccharomyces cerevisiae cell cycle genes.
    Newcomb LL; Diderich JA; Slattery MG; Heideman W
    Eukaryot Cell; 2003 Feb; 2(1):143-9. PubMed ID: 12582131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast.
    Gallego C; GarĂ­ E; Colomina N; Herrero E; Aldea M
    EMBO J; 1997 Dec; 16(23):7196-206. PubMed ID: 9384596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of Cln3 in filamentous growth and invasive growth of Saccharomyces cerevisiae].
    Ni J; Liu XY; Chen JY
    Shi Yan Sheng Wu Xue Bao; 2004 Apr; 37(2):145-50. PubMed ID: 15259988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast.
    Polymenis M; Schmidt EV
    Genes Dev; 1997 Oct; 11(19):2522-31. PubMed ID: 9334317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities.
    Levine K; Huang K; Cross FR
    Mol Cell Biol; 1996 Dec; 16(12):6794-803. PubMed ID: 8943334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae.
    Shi L; Tu BP
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7318-23. PubMed ID: 23589851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway.
    Cross FR
    Mol Cell Biol; 1990 Dec; 10(12):6482-90. PubMed ID: 2147225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast cell cycle: positive and negative controls.
    Aldea M; Casas C; Gallego C; Espinet C; Herrero E
    Microbiologia; 1994; 10(1-2):27-36. PubMed ID: 7946125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.