These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 9441293)

  • 41. Common polymorphisms of the PAI1 gene do not play a major role in the development of diabetic nephropathy in Type 1 diabetes.
    Martin RJ; Savage DA; Patterson CC; Brady HR; Maxwell AP
    Diabet Med; 2007 Mar; 24(3):259-65. PubMed ID: 17263760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic factors in the development of diabetic nephropathy.
    Trevisan R; Viberti G
    J Lab Clin Med; 1995 Oct; 126(4):342-9. PubMed ID: 7561441
    [No Abstract]   [Full Text] [Related]  

  • 43. Methylenetetrahydrofolate reductase gene polymorphism as a risk factor for diabetic nephropathy in IDDM patients.
    Shcherbak NS; Shutskaya ZV; Sheidina AM; Larionova VI; Schwartz EI
    Mol Genet Metab; 1999 Nov; 68(3):375-8. PubMed ID: 10562465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Association of VEGF-1499C-->T polymorphism with diabetic nephropathy in type 1 diabetes mellitus.
    McKnight AJ; Maxwell AP; Patterson CC; Brady HR; Savage DA
    J Diabetes Complications; 2007; 21(4):242-5. PubMed ID: 17616354
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Polymorphism of aldose reductase gene and susceptibility to retinopathy and nephropathy in Caucasians with type 1 diabetes].
    Fanelli A; Hadjadj S; Gallois Y; Fumeron F; Betoule D; Grandchamp B; Marre M
    Arch Mal Coeur Vaiss; 2002; 95(7-8):701-8. PubMed ID: 12365083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunogenetics of insulin-dependent juvenile diabetes.
    Dausset J; Hors J
    Diabetes Res; 1984 Sep; 1(3):115-23. PubMed ID: 6085045
    [No Abstract]   [Full Text] [Related]  

  • 47. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy.
    Fujisawa T; Ikegami H; Kawaguchi Y; Hamada Y; Ueda H; Shintani M; Fukuda M; Ogihara T
    Diabetologia; 1998 Jan; 41(1):47-53. PubMed ID: 9498629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resequencing of genes for transforming growth factor beta1 (TGFB1) type 1 and 2 receptors (TGFBR1, TGFBR2), and association analysis of variants with diabetic nephropathy.
    McKnight AJ; Savage DA; Patterson CC; Sadlier D; Maxwell AP
    BMC Med Genet; 2007 Feb; 8():5. PubMed ID: 17319955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Re: Exclusion of polymorphisms in carnosinase genes (CNDP1 and CNDP2) as a cause of diabetic nephropathy in type 1 diabetes: results of large case-control and follow-up studies.
    Bakker SJ; Alkhalaf A; Tarnow L; Navis G
    Diabetes; 2008 Dec; 57(12):e16; author reply e17. PubMed ID: 19033401
    [No Abstract]   [Full Text] [Related]  

  • 50. Molecular genetic approaches to the identification of genes involved in the development of nephropathy in insulin-dependent diabetes mellitus.
    Krolewski AS; Doria A; Magre J; Warram JH; Housman D
    J Am Soc Nephrol; 1992 Oct; 3(4 Suppl):S9-17. PubMed ID: 1457765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Genetic susceptibility to diabetic nephropathy].
    Maeda S
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():433-7. PubMed ID: 16523928
    [No Abstract]   [Full Text] [Related]  

  • 52. Polymorphic differences in the SOD-2 gene may affect the pathogenesis of nephropathy in patients with diabetes and diabetic complications.
    Houldsworth A; Hodgkinson A; Shaw S; Millward A; Demaine AG
    Gene; 2015 Sep; 569(1):41-5. PubMed ID: 25858271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism.
    Zanchi A; Moczulski DK; Hanna LS; Wantman M; Warram JH; Krolewski AS
    Kidney Int; 2000 Feb; 57(2):405-13. PubMed ID: 10652017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Testing mode of inheritance of a candidate mutation at a quantitative trait locus.
    Rabinowitz D; Zanchi A; Schaumberg D; Krolewski A
    Hum Hered; 2000; 50(3):184-8. PubMed ID: 10686498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential HLA haplotype sharing conditional on proband genotype is likely a necessary consequence of all three allele heterogeneity models: a rebuttal.
    Rotter JI; Vadheim CM
    Genet Epidemiol Suppl; 1986; 1():359-62. PubMed ID: 3569865
    [No Abstract]   [Full Text] [Related]  

  • 56. Epidemiology and genetics of diabetic complications.
    Newfield RS; Polak M; Marchase R; Czernichow P
    Diabetologia; 1997 Oct; 40 Suppl 3():B62-4. PubMed ID: 9345648
    [No Abstract]   [Full Text] [Related]  

  • 57. Progress with the genetics of insulin-dependent diabetes mellitus.
    Hitman GA
    Clin Endocrinol (Oxf); 1986 Oct; 25(4):463-72. PubMed ID: 2887307
    [No Abstract]   [Full Text] [Related]  

  • 58. Interactive effect of two candidate genes in a disease: extension of the marker-association-segregation chi(2) method.
    Dizier MH; Babron MC; Clerget-Darpoux F
    Am J Hum Genet; 1994 Nov; 55(5):1042-9. PubMed ID: 7977341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insulin-dependent diabetes mellitus: a model for the study of multifactorial disorders.
    Field LL
    Am J Hum Genet; 1988 Dec; 43(6):793-8. PubMed ID: 3195582
    [No Abstract]   [Full Text] [Related]  

  • 60. GWAS of diabetic nephropathy: is the GENIE out of the bottle?
    Böger CA; Sedor JR
    PLoS Genet; 2012 Sep; 8(9):e1002989. PubMed ID: 23028380
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.