BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 9441707)

  • 21. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variations in the soluble alpha-crystallin proteins from human cataractous lenses.
    Alao JF
    Afr J Med Med Sci; 1978 Mar; 7(1):49-56. PubMed ID: 97955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of three isoforms of a 9 kDa gamma D-crystallin fragment isolated from human lenses.
    Srivastava OP; Srivastava K
    Exp Eye Res; 1996 Jun; 62(6):593-604. PubMed ID: 8983941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of cysteine residues from alpha-A crystallin during cataractogenesis of the human lens.
    Takemoto LJ
    Biochem Biophys Res Commun; 1996 Jun; 223(2):216-20. PubMed ID: 8670261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress.
    Weinreb O; van Rijk AF; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3893-7. PubMed ID: 11053291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inability of chaperones to fold mutant zeta crystallin, an aggregation-prone eye lens protein.
    Goenka S; Rao CM
    Mol Vis; 2000 Nov; 6():232-6. PubMed ID: 11073557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M
    Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional elements in molecular chaperone alpha-crystallin: identification of binding sites in alpha B-crystallin.
    Sharma KK; Kaur H; Kester K
    Biochem Biophys Res Commun; 1997 Oct; 239(1):217-22. PubMed ID: 9345298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carnosine inhibits modifications and decreased molecular chaperone activity of lens alpha-crystallin induced by ribose and fructose 6-phosphate.
    Yan H; Harding JJ
    Mol Vis; 2006 Mar; 12():205-14. PubMed ID: 16604053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human alpha-crystallin-III isolation and characterization of protein from normal infant lenses and old lens peripheries.
    Roy D; Spector A
    Invest Ophthalmol; 1976 May; 15(5):394-9. PubMed ID: 1262170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3-Hydroxykynurenine oxidizes alpha-crystallin: potential role in cataractogenesis.
    Korlimbinis A; Hains PG; Truscott RJ; Aquilina JA
    Biochemistry; 2006 Feb; 45(6):1852-60. PubMed ID: 16460031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.
    Kiss AJ; Mirarefi AY; Ramakrishnan S; Zukoski CF; Devries AL; Cheng CH
    J Exp Biol; 2004 Dec; 207(Pt 26):4633-49. PubMed ID: 15579559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T; Kodama T; Horwitz J; Takemoto L
    Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
    Santhoshkumar P; Udupa P; Murugesan R; Sharma KK
    J Biol Chem; 2008 Mar; 283(13):8477-85. PubMed ID: 18227073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium activated proteolysis and protein modification in the U18666A cataract.
    Chandrasekher G; Cenedella RJ
    Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased deamidation of asparagine during human senile cataractogenesis.
    Takemoto L; Boyle D
    Mol Vis; 2000 Sep; 6():164-8. PubMed ID: 10976112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.