These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 9441707)
41. Chromatofocusing for separation of human cataractous lens low molecular weight proteins. Kabasawa I; Watanabe M; Kimura M Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752 [TBL] [Abstract][Full Text] [Related]
42. Antisera to alpha crystallin as probes to study changes in lens proteins during human cataractogenesis. Takemoto L; Emmons T Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1348-52. PubMed ID: 2365565 [TBL] [Abstract][Full Text] [Related]
43. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract]. Zhao HR; Hu SQ; Ren XH Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996 [TBL] [Abstract][Full Text] [Related]
44. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
45. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Hanson SR; Hasan A; Smith DL; Smith JB Exp Eye Res; 2000 Aug; 71(2):195-207. PubMed ID: 10930324 [TBL] [Abstract][Full Text] [Related]
46. Properties of alpha-crystallin bound to lens membrane: probing organization at the membrane surface. Chandrasekher G; Cenedella RJ Exp Eye Res; 1997 Mar; 64(3):423-30. PubMed ID: 9196394 [TBL] [Abstract][Full Text] [Related]
47. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Evans P; Slingsby C; Wallace BA Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660 [TBL] [Abstract][Full Text] [Related]
48. A covalent change in alpha crystallin during opacification of the Emory mouse lens. Takemoto L; Horwitz J; Kuck J; Kuck K Lens Eye Toxic Res; 1989; 6(3):431-41. PubMed ID: 2486937 [TBL] [Abstract][Full Text] [Related]
49. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Bessems GJ; Hoenders HJ; Wollensak J Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209 [TBL] [Abstract][Full Text] [Related]
50. Modifications to rat lens major intrinsic protein in selenite-induced cataract. Schey KL; Fowler JG; Shearer TR; David L Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969 [TBL] [Abstract][Full Text] [Related]
51. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts. Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096 [TBL] [Abstract][Full Text] [Related]
52. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract. Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791 [TBL] [Abstract][Full Text] [Related]
53. Comparison of post-translational modifications of alpha A-crystallin from normal and hereditary cataract rats. Fujii N; Takeuchi N; Fujii N; Tezuka T; Kuge K; Takata T; Kamei A; Saito T Amino Acids; 2004 Mar; 26(2):147-52. PubMed ID: 15042443 [TBL] [Abstract][Full Text] [Related]
54. The formation of oxidatively induced high-molecular-weight aggregate of alpha-/gamma-crystallins. Huang FY; Chia CM; Ho Y Biochem Biophys Res Commun; 1999 Jun; 260(1):60-5. PubMed ID: 10381344 [TBL] [Abstract][Full Text] [Related]
55. Inhibition of heat-induced aggregation of beta- and gamma-crystallin by alpha-crystallin evaluated by gel permeation HPLC. Saso L; Grippa E; Gatto MT; Leone MG; Silvestrini B Biochemistry (Mosc); 2000 Feb; 65(2):208-12. PubMed ID: 10713549 [TBL] [Abstract][Full Text] [Related]
56. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
57. MALDI tissue imaging of ocular lens alpha-crystallin. Han J; Schey KL Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2990-6. PubMed ID: 16799044 [TBL] [Abstract][Full Text] [Related]
58. Crystallin composition of human cataractous lens may be modulated by protein glycation. Ramalho J; Marques C; Pereira P; Mota MC Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180 [TBL] [Abstract][Full Text] [Related]
59. The presence of a human UV filter within the lens represents an oxidative stress. Berry Y; Truscott RJ Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669 [TBL] [Abstract][Full Text] [Related]
60. NMR analyses of the cold cataract. II. Studies on protein solutions. Lerman S; Megaw JM; Gardner K; Ashley D; Long RC; Goldstein JH Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):99-105. PubMed ID: 6826319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]