BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9442028)

  • 1. The roles of His-167 and His-275 in the reaction catalyzed by glutamate decarboxylase from Escherichia coli.
    Tramonti A; De Biase D; Giartosio A; Bossa F; John RA
    J Biol Chem; 1998 Jan; 273(4):1939-45. PubMed ID: 9442028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH.
    Pennacchietti E; Lammens TM; Capitani G; Franssen MC; John RA; Bossa F; De Biase D
    J Biol Chem; 2009 Nov; 284(46):31587-96. PubMed ID: 19797049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli.
    Tramonti A; John RA; Bossa F; De Biase D
    Eur J Biochem; 2002 Oct; 269(20):4913-20. PubMed ID: 12383249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational alteration in serum albumin as a carrier for pyridoxal phosphate: a distinction from pyridoxal phosphate-dependent glutamate decarboxylase.
    Zhang F; Thottananiyil M; Martin DL; Chen CH
    Arch Biochem Biophys; 1999 Apr; 364(2):195-202. PubMed ID: 10190974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Arg-277 in the binding of pyridoxal 5'-phosphate to Trypanosoma brucei ornithine decarboxylase.
    Osterman AL; Brooks HB; Rizo J; Phillips MA
    Biochemistry; 1997 Apr; 36(15):4558-67. PubMed ID: 9109665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase.
    Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML
    Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase.
    Huang YC; Colman RF
    Biochemistry; 2002 Apr; 41(17):5637-43. PubMed ID: 11969425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.
    Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E
    Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential roles for three conserved histidine residues within the large subunit of carbamoyl phosphate synthetase.
    Miles BW; Mareya SM; Post LE; Post DJ; Chang SH; Raushel FM
    Biochemistry; 1993 Jan; 32(1):232-40. PubMed ID: 8418843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli serine hydroxymethyltransferase. The role of histidine 228 in determining reaction specificity.
    Stover P; Zamora M; Shostak K; Gautam-Basak M; Schirch V
    J Biol Chem; 1992 Sep; 267(25):17679-87. PubMed ID: 1517215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Glutamate decarboxylase from Escherichia coli: catalytic role of the histidine residue].
    Mishin AA; Sukhareva BS
    Dokl Akad Nauk SSSR; 1986; 290(5):1268-71. PubMed ID: 3539564
    [No Abstract]   [Full Text] [Related]  

  • 14. Phylogenetic and amino acid conservation analyses of bacterial L-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain.
    Stuecker TN; Bramhacharya S; Hodge-Hanson KM; Suen G; Escalante-Semerena JC
    BMC Res Notes; 2015 Aug; 8():354. PubMed ID: 26276430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobacillus brevis CGMCC 1306 glutamate decarboxylase: Crystal structure and functional analysis.
    Huang J; Fang H; Gai ZC; Mei JQ; Li JN; Hu S; Lv CJ; Zhao WR; Mei LH
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1703-1709. PubMed ID: 30049439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of aspartate-233 to valine in mouse ornithine decarboxylase reduces enzyme activity.
    Kilpeläinen PT; Hietala OA
    Int J Biochem Cell Biol; 1998 Jul; 30(7):803-9. PubMed ID: 9722985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
    Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A
    J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis.
    Hopkins S; Schirch V
    J Biol Chem; 1986 Mar; 261(7):3363-9. PubMed ID: 3512553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis.
    Schenk G; Leeper FJ; England R; Nixon PF; Duggleby RG
    Eur J Biochem; 1997 Aug; 248(1):63-71. PubMed ID: 9310361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.