These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9442898)

  • 1. Molecular genetic basis of adaptive selection: examples from color vision in vertebrates.
    Yokoyama S
    Annu Rev Genet; 1997; 31():315-36. PubMed ID: 9442898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of dim-light and color vision pigments.
    Yokoyama S
    Annu Rev Genomics Hum Genet; 2008; 9():259-82. PubMed ID: 18544031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of color vision in vertebrates.
    Yokoyama S
    Gene; 2002 Oct; 300(1-2):69-78. PubMed ID: 12468088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis and experimental approaches to study color vision in vertebrates.
    Yokoyama S
    Methods Enzymol; 2000; 315():312-25. PubMed ID: 10736710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2005 Apr; 22(4):968-75. PubMed ID: 15647522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid replacements and wavelength absorption of visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1995 Jan; 12(1):53-61. PubMed ID: 7877496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of vertebrate visual pigments.
    Yokoyama S
    Prog Retin Eye Res; 2000 Jul; 19(4):385-419. PubMed ID: 10785616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233.
    Hiramatsu C; Radlwimmer FB; Yokoyama S; Kawamura S
    Vision Res; 2004; 44(19):2225-31. PubMed ID: 15208009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for tetrachromatic color vision.
    Okano T; Fukada Y; Yoshizawa T
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):405-14. PubMed ID: 8529019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of variation in human color vision.
    Deeb SS
    Clin Genet; 2005 May; 67(5):369-77. PubMed ID: 15811001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change.
    Yokoyama S; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7366-71. PubMed ID: 10861005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.