These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9443828)

  • 1. Effect of stimulating peripheral and central neural pathways on pharyngeal muscle contraction timing during swallowing in dogs.
    Venker-van Haagen AJ; Van den Brom WE; Hellebrekers LJ
    Brain Res Bull; 1998; 45(2):131-6. PubMed ID: 9443828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of superior laryngeal nerve transection on pharyngeal muscle contraction timing and sequence of activity during eating and stimulation of the nucleus solitarius in dogs.
    Venker-van Haagen AJ; Van den Brom WE; Hellebrekers LJ
    Brain Res Bull; 1999 Aug; 49(6):393-400. PubMed ID: 10483915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMAPs in pharyngeal and hyoid muscles evoked by nucleus solitarius stimulation in dogs.
    Venker-van Haagen AJ; Barbas-Henry HA; Van den Brom WE
    Brain Res Bull; 1995; 37(6):555-9. PubMed ID: 7670877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous electromyographic recordings of pharyngeal muscle activity in normal and previously denervated muscles in dogs.
    Venker-van Haagen AJ; Hartman W; van den Brom WE; Wolvekamp WT
    Am J Vet Res; 1989 Oct; 50(10):1725-8. PubMed ID: 2802303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract.
    Paton JF; Li YW; Kasparov S
    Neuroscience; 1999; 93(1):143-54. PubMed ID: 10430479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the glossopharyngeal nerve and the pharyngeal branch of the vagus nerve to the swallowing process in dogs.
    Venker-van Haagen AJ; Hartman W; Wolvekamp WT
    Am J Vet Res; 1986 Jun; 47(6):1300-7. PubMed ID: 3729131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular activity of motoneurons of the rostral nucleus ambiguus during swallowing in sheep.
    Zoungrana OR; Amri M; Car A; Roman C
    J Neurophysiol; 1997 Feb; 77(2):909-22. PubMed ID: 9065858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia.
    Fraser C; Rothwell J; Power M; Hobson A; Thompson D; Hamdy S
    Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G137-44. PubMed ID: 12606304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between central pattern generators for breathing and swallowing in the cat.
    Dick TE; Oku Y; Romaniuk JR; Cherniack NS
    J Physiol; 1993 Jun; 465():715-30. PubMed ID: 8229859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emetic stimulation inhibits the swallowing reflex in decerebrate rats.
    Kurozumi C; Yamagata R; Himi N; Koga T
    Auton Neurosci; 2008 Jun; 140(1-2):24-9. PubMed ID: 18396466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electromyographic behavior of the thyroarytenoid muscle during swallowing.
    Ertekin C; Celik M; Seçil Y; Tarlaci S; Kiyloğlu N; Aydoğdu I
    J Clin Gastroenterol; 2000 Apr; 30(3):274-80. PubMed ID: 10777187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous electrical stimulation of superior laryngeal nerve inhibits initiation of swallowing in anesthetized rats.
    Nakajima Y; Tsujimura T; Tsuji K; Magara J; Inoue M
    Neurosci Lett; 2024 Mar; 825():137672. PubMed ID: 38360144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic activity from human laryngeal, pharyngeal, and submental muscles during swallowing.
    Perlman AL; Palmer PM; McCulloch TM; Vandaele DJ
    J Appl Physiol (1985); 1999 May; 86(5):1663-9. PubMed ID: 10233133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification in activity of medullary respiratory-related neurons for vocalization and swallowing.
    Larson CR; Yajima Y; Ko P
    J Neurophysiol; 1994 Jun; 71(6):2294-304. PubMed ID: 7931518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor innervation of the cricopharyngeus muscle by the recurrent laryngeal nerve.
    Hammond CS; Davenport PW; Hutchison A; Otto RA
    J Appl Physiol (1985); 1997 Jul; 83(1):89-94. PubMed ID: 9216949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The cricopharyngeal muscle and the laryngeal nerves: contribution to the functional anatomy of swallowing].
    Prades JM; Timoshenko AP; Asanau A; Gavid M; Benakki H; Dubois MD; Faye MB; Martin C
    Morphologie; 2009; 93(301):35-41. PubMed ID: 19815444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of SLN-evoked swallows during rest and chewing in the freely behaving rabbit.
    Takagi M; Noda T; Yamada Y
    Brain Res; 2002 Nov; 956(1):74-80. PubMed ID: 12426048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans.
    Barkmeier JM; Bielamowicz S; Takeda N; Ludlow CL
    J Neurophysiol; 2000 Mar; 83(3):1264-72. PubMed ID: 10712454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-triggered functional electrical stimulation during swallowing.
    Burnett TA; Mann EA; Stoklosa JB; Ludlow CL
    J Neurophysiol; 2005 Dec; 94(6):4011-8. PubMed ID: 16107520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of electrical and contractile activities of the cricopharyngeus muscle in the cat.
    Medda BK; Lang IM; Dodds WJ; Christl M; Kern M; Hogan WJ; Shaker R
    Am J Physiol; 1997 Aug; 273(2 Pt 1):G470-9. PubMed ID: 9277427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.