BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 9444393)

  • 21. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
    Scheffer MP; Eltsov M; Bednar J; Frangakis AS
    J Struct Biol; 2012 May; 178(2):207-14. PubMed ID: 22138167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopic studies on erythrocytes from an evolutionary perspective.
    Bhattacharyya K; Guha T; Bhar R; Ganesan V; Khan M; Brahmachary RL
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jul; 279(1):671-5. PubMed ID: 15224408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties.
    Lebedev DV; Filatov MV; Kuklin AI; Islamov AKh; Kentzinger E; Pantina R; Toperverg BP; Isaev-Ivanov VV
    FEBS Lett; 2005 Feb; 579(6):1465-8. PubMed ID: 15733858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insight into the mitotic chromosome structure: irregular folding of nucleosome fibers without 30-nm chromatin structure.
    Maeshima K; Hihara S; Takata H
    Cold Spring Harb Symp Quant Biol; 2010; 75():439-44. PubMed ID: 21447821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleosome arrays reveal the two-start organization of the chromatin fiber.
    Dorigo B; Schalch T; Kulangara A; Duda S; Schroeder RR; Richmond TJ
    Science; 2004 Nov; 306(5701):1571-3. PubMed ID: 15567867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SEM images of DNA double helix and nucleosomes observed by ultrahigh-resolution scanning electron microscopy.
    Inaga S; Osatake H; Tanaka K
    J Electron Microsc (Tokyo); 1991 Jun; 40(3):181-6. PubMed ID: 1791402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supranucleosomal organization of chromatin. Electron microscopic visualization of long polynucleosomal chains.
    Azorín F; Pérez-Grau L; Subirana JA
    Chromosoma; 1982; 85(2):251-60. PubMed ID: 6811223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin.
    Bednar J; Horowitz RA; Grigoryev SA; Carruthers LM; Hansen JC; Koster AJ; Woodcock CL
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14173-8. PubMed ID: 9826673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin.
    Scipioni A; Turchetti G; Morosetti S; De Santis P
    Biophys Chem; 2010 May; 148(1-3):56-67. PubMed ID: 20236753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of nucleosomal substructure in native chromatin by atomic force microscopy.
    Martin LD; Vesenka JP; Henderson E; Dobbs DL
    Biochemistry; 1995 Apr; 34(14):4610-6. PubMed ID: 7718563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Internal structure of the 30 nm chromatin fiber.
    Bartolomé S; Bermúdez A; Daban JR
    J Cell Sci; 1994 Nov; 107 ( Pt 11)():2983-92. PubMed ID: 7698998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Structure of chromatin. I: Levels of DNA organization in the nucleus; nucleosome and chromatin fibres].
    Santisteban MS
    Pathol Biol (Paris); 1994 Nov; 42(9):868-83. PubMed ID: 7753597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.
    Dalal Y; Wang H; Lindsay S; Henikoff S
    PLoS Biol; 2007 Aug; 5(8):e218. PubMed ID: 17676993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High concentration of DNA in condensed chromatin.
    Daban JR
    Biochem Cell Biol; 2003 Jun; 81(3):91-9. PubMed ID: 12897842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orientation of the nucleosome within the higher order structure of chromatin.
    McGhee JD; Rau DC; Charney E; Felsenfeld G
    Cell; 1980 Nov; 22(1 Pt 1):87-96. PubMed ID: 7428043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supranucleosomal fiber loops of chicken erythrocyte chromatin.
    Seki S; Nakamura T; Oda T
    J Electron Microsc (Tokyo); 1984; 33(2):178-81. PubMed ID: 6512477
    [No Abstract]   [Full Text] [Related]  

  • 39. DNase I footprinting of the nucleosome in whole nuclei.
    Staynov DZ
    Biochem Biophys Res Commun; 2008 Jul; 372(1):226-9. PubMed ID: 18485894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The in vitro reconstitution of nucleosome and its binding patterns with HMG1/2 and HMG14/17 proteins.
    Zhang SB; Huang J; Zhao H; Zhang Y; Hou CH; Cheng XD; Jiang C; Li MQ; Hu J; Qian RL
    Cell Res; 2003 Oct; 13(5):351-9. PubMed ID: 14672558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.