BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9444766)

  • 1. Structure-function relationships in the ferritins.
    Harrison PM; Hempstead PD; Artymiuk PJ; Andrews SC
    Met Ions Biol Syst; 1998; 35():435-77. PubMed ID: 9444766
    [No Abstract]   [Full Text] [Related]  

  • 2. Alternative metal-binding sites in rubrerythrin.
    Sieker LC; Holmes M; Le Trong I; Turley S; Santarsiero BD; Liu MY; LeGall J; Stenkamp RE
    Nat Struct Biol; 1999 Apr; 6(4):308-9. PubMed ID: 10201393
    [No Abstract]   [Full Text] [Related]  

  • 3. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains.
    deMaré F; Kurtz DM; Nordlund P
    Nat Struct Biol; 1996 Jun; 3(6):539-46. PubMed ID: 8646540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the conserved hypothetical protein MPN330 (GI: 1674200) from Mycoplasma pneumoniae.
    Das D; Oganesyan N; Yokota H; Pufan R; Kim R; Kim SH
    Proteins; 2005 Feb; 58(2):504-8. PubMed ID: 15562512
    [No Abstract]   [Full Text] [Related]  

  • 5. Crystal structure of sulerythrin, a rubrerythrin-like protein from a strictly aerobic archaeon, Sulfolobus tokodaii strain 7, shows unexpected domain swapping.
    Fushinobu S; Shoun H; Wakagi T
    Biochemistry; 2003 Oct; 42(40):11707-15. PubMed ID: 14529281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in a bacterial DING protein.
    Ahn S; Moniot S; Elias M; Chabriere E; Kim D; Scott K
    FEBS Lett; 2007 Jul; 581(18):3455-60. PubMed ID: 17612529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomy of a trans-cis peptide transition during least-squares refinement of rubrerythrin.
    Stenkamp RE
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1599-602. PubMed ID: 16301793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin.
    Tempel W; Liu ZJ; Schubot FD; Shah A; Weinberg MV; Jenney FE; Arendall WB; Adams MW; Richardson JS; Richardson DC; Rose JP; Wang BC
    Proteins; 2004 Dec; 57(4):878-82. PubMed ID: 15468318
    [No Abstract]   [Full Text] [Related]  

  • 9. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray diffraction study of a protein with a high potential rubredoxin center and a hemerythrin-type Fe center.
    Sieker LC; Turley S; Prickril BC; LeGall J
    Proteins; 1988; 3(3):184-6. PubMed ID: 3255104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase?
    Gomes CM; Le Gall J; Xavier AV; Teixeira M
    Chembiochem; 2001 Aug; 2(7-8):583-7. PubMed ID: 11828492
    [No Abstract]   [Full Text] [Related]  

  • 12. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives.
    Stillman TJ; Hempstead PD; Artymiuk PJ; Andrews SC; Hudson AJ; Treffry A; Guest JR; Harrison PM
    J Mol Biol; 2001 Mar; 307(2):587-603. PubMed ID: 11254384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site.
    Ilari A; Stefanini S; Chiancone E; Tsernoglou D
    Nat Struct Biol; 2000 Jan; 7(1):38-43. PubMed ID: 10625425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Di-iron-carboxylate proteins.
    Nordlund P; Eklund H
    Curr Opin Struct Biol; 1995 Dec; 5(6):758-66. PubMed ID: 8749363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain.
    Waterman DG; Ortiz-Lombardía M; Fogg MJ; Koonin EV; Antson AA
    J Mol Biol; 2006 Feb; 356(1):97-110. PubMed ID: 16343540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A helix swapping study of two protein cages.
    Fan R; Boyle AL; Cheong VV; Ng SL; Orner BP
    Biochemistry; 2009 Jun; 48(24):5623-30. PubMed ID: 19405543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural divergence and distant relationships in proteins: evolution of the globins.
    Lecomte JT; Vuletich DA; Lesk AM
    Curr Opin Struct Biol; 2005 Jun; 15(3):290-301. PubMed ID: 15922591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the putative DNA-binding protein SP_1288 from Streptococcus pyogenes.
    Oganesyan V; Pufan R; DeGiovanni A; Yokota H; Kim R; Kim SH
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1266-71. PubMed ID: 15213388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin.
    Wang C; Xi J; Begley TP; Nicholson LK
    Nat Struct Biol; 2001 Jan; 8(1):47-51. PubMed ID: 11135670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis.
    Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS
    J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.