These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 9444773)
1. Iron chelators for clinical use. Tilbrook GS; Hider RC Met Ions Biol Syst; 1998; 35():691-730. PubMed ID: 9444773 [No Abstract] [Full Text] [Related]
2. Methoxylation of desazadesferrithiocin analogues: enhanced iron clearing efficiency. Bergeron RJ; Wiegand J; McManis JS; Bussenius J; Smith RE; Weimar WR J Med Chem; 2003 Apr; 46(8):1470-7. PubMed ID: 12672247 [TBL] [Abstract][Full Text] [Related]
3. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload. Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672 [TBL] [Abstract][Full Text] [Related]
4. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode. Weger HG; Walker CN; Fink MB Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903 [TBL] [Abstract][Full Text] [Related]
5. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Chaston TB; Richardson DR Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659 [TBL] [Abstract][Full Text] [Related]
6. Coordination chemistry and biology of chelators for the treatment of iron overload disorders. Bernhardt PV Dalton Trans; 2007 Aug; (30):3214-20. PubMed ID: 17893764 [TBL] [Abstract][Full Text] [Related]
7. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Cowart RE Arch Biochem Biophys; 2002 Apr; 400(2):273-81. PubMed ID: 12054438 [TBL] [Abstract][Full Text] [Related]
8. Metal ion chelating peptides with superoxide dismutase activity. Fisher AE; Naughton DP Biomed Pharmacother; 2005 May; 59(4):158-62. PubMed ID: 15862709 [TBL] [Abstract][Full Text] [Related]
9. The evolution of iron chelators for the treatment of iron overload disease and cancer. Kalinowski DS; Richardson DR Pharmacol Rev; 2005 Dec; 57(4):547-83. PubMed ID: 16382108 [TBL] [Abstract][Full Text] [Related]
10. The kinetics of dimethylhydroxypyridinone interactions with iron(iii) and the catalysis of iron(iii) ligand exchange reactions: implications for bacterial iron transport and combination chelation therapies. Harrington JM; Mysore MM; Crumbliss AL Dalton Trans; 2018 May; 47(20):6954-6964. PubMed ID: 29721567 [TBL] [Abstract][Full Text] [Related]
11. Structure-activity relationships of novel iron chelators for the treatment of iron overload disease: the methyl pyrazinylketone isonicotinoyl hydrazone series. Kalinowski DS; Sharpe PC; Bernhardt PV; Richardson DR J Med Chem; 2008 Jan; 51(2):331-44. PubMed ID: 18159922 [TBL] [Abstract][Full Text] [Related]
12. Unprecedented oxidation of a biologically active aroylhydrazone chelator catalysed by iron(III): serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy. Bernhardt PV; Chin P; Richardson DR J Biol Inorg Chem; 2001 Oct; 6(8):801-9. PubMed ID: 11713687 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis, and characterization of novel iron chelators: structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. Kalinowski DS; Yu Y; Sharpe PC; Islam M; Liao YT; Lovejoy DB; Kumar N; Bernhardt PV; Richardson DR J Med Chem; 2007 Jul; 50(15):3716-29. PubMed ID: 17602603 [TBL] [Abstract][Full Text] [Related]
14. Effects of citrinin on iron-redox cycle. Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267 [TBL] [Abstract][Full Text] [Related]
16. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Mies KA; Wirgau JI; Crumbliss AL Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic potential of iron chelators in diseases associated with iron mismanagement. Weinberg ED J Pharm Pharmacol; 2006 May; 58(5):575-84. PubMed ID: 16640825 [TBL] [Abstract][Full Text] [Related]
18. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Rossi NA; Mustafa I; Jackson JK; Burt HM; Horte SA; Scott MD; Kizhakkedathu JN Biomaterials; 2009 Feb; 30(4):638-48. PubMed ID: 18977029 [TBL] [Abstract][Full Text] [Related]
19. N,N'-bis-dibenzyl ethylenediaminediacetic acid (DBED): a site-specific hydroxyl radical scavenger acting as an "oxidative stress activatable" iron chelator in vitro. Galey JB; Dumats J; Beck I; Fernandez B; Hocquaux M Free Radic Res; 1995 Jan; 22(1):67-86. PubMed ID: 7889149 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic siderophores: from structural probes to diagnostic tools. Shanzer A; Libman J Met Ions Biol Syst; 1998; 35():329-354. PubMed ID: 9462967 [No Abstract] [Full Text] [Related] [Next] [New Search]