These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9444835)

  • 1. Stability and a control strategy of a multilink musculoskeletal model with applications in FES.
    Dariush B; Parnianpour M; Hemami H
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):3-14. PubMed ID: 9444835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion control of musculoskeletal systems with redundancy.
    Park H; Durand DM
    Biol Cybern; 2008 Dec; 99(6):503-16. PubMed ID: 18985380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.
    Kim JY; Mills JK; Vette AH; Popovic MR
    J Biomech Eng; 2007 Dec; 129(6):838-47. PubMed ID: 18067387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool.
    Lynch CL; Graham GM; Popovic MR
    J Neural Eng; 2011 Aug; 8(4):046034. PubMed ID: 21757801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and movement of a one-link neuromusculoskeletal sagittal arm.
    Dinneen JA; Hemami H
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):541-8. PubMed ID: 8262535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
    Neptune RR
    Phys Med Rehabil Clin N Am; 2000 May; 11(2):417-34, viii. PubMed ID: 10810769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of standing and gait using electrical stimulation: influence of muscle model complexity on control strategy.
    Durfee WK
    Prog Brain Res; 1993; 97():369-81. PubMed ID: 8234762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.
    Ajoudani A; Erfanian A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and energy criteria in healthy and paraplegic subject gait.
    Karcnik T; Kralj A
    Artif Organs; 1997 Mar; 21(3):191-4. PubMed ID: 9148702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of closed-loop control algorithms for regulating electrically stimulated knee movements in individuals with spinal cord injury.
    Lynch CL; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):539-48. PubMed ID: 22772375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating dynamic simulations of movement using computed muscle control.
    Thelen DG; Anderson FC; Delp SL
    J Biomech; 2003 Mar; 36(3):321-8. PubMed ID: 12594980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study.
    Yamaguchi GT; Zajac FE
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):886-902. PubMed ID: 2227975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microcomputer FES system for wrist moving control.
    Cao L; Yang JS; Geng ZL; Cao G
    Adv Exp Med Biol; 2011; 696():615-21. PubMed ID: 21431603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion control of the ankle joint with a multiple contact nerve cuff electrode: a simulation study.
    Park HJ; Durand DM
    Biol Cybern; 2014 Aug; 108(4):445-57. PubMed ID: 24939581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.
    Nekoukar V; Erfanian A
    Med Eng Phys; 2013 Nov; 35(11):1659-68. PubMed ID: 23860368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the optimal control of cyclical leg movements induced by functional electrical stimulation.
    Veltink PH; Franken HM; Van Alsté JA; Boom HB
    Int J Artif Organs; 1992 Dec; 15(12):746-55. PubMed ID: 1493950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations.
    Rueterbories J; Spaich EG; Andersen OK
    Med Eng Phys; 2014 Apr; 36(4):502-8. PubMed ID: 24182424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.