These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9444835)

  • 21. Control of a one-link arm by burst signal generators.
    Kim J; Hemami H
    Biol Cybern; 1995 Jun; 73(1):37-47. PubMed ID: 7654849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applying fuzzy logic to control cycling movement induced by functional electrical stimulation.
    Chen JJ; Yu NY; Huang DG; Ann BT; Chang GC
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):158-69. PubMed ID: 9184902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulating knee joint position by combining electrical stimulation with a controllable friction brake.
    Durfee WK; Hausdorff JM
    Ann Biomed Eng; 1990; 18(6):575-96. PubMed ID: 2281882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Risk-tendency graph (RTG): a new gait-analysis technique for monitoring FES-assisted paraplegic walking stability.
    Ming D; Hu Y; Wong Y; Wan B; Luk KD; Leong JC
    Med Sci Monit; 2009 Aug; 15(8):MT105-12. PubMed ID: 19644428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sliding mode closed-loop control of FES: controlling the shank movement.
    Jezernik S; Wassink RG; Keller T
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving valid and deficient body segment coordination to improve FES-assisted sit-to-stand in paraplegic subjects.
    Jovic J; Fraisse P; Coste CA; Bonnet V; Fattal C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975369. PubMed ID: 22275573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model of the stability control of human thorax and pelvis movements during walking.
    Wu Q; Swain R
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):67-74. PubMed ID: 12186735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inclusion of actuator dynamics in simulations of assisted human movement.
    Nguyen VQ; LaPre AK; Price MA; Umberger BR; Sup FC
    Int J Numer Method Biomed Eng; 2020 May; 36(5):e3334. PubMed ID: 32170995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiologic costs of computer-controlled walking in persons with paraplegia using a reciprocating-gait orthosis.
    Petrofsky JS; Smith JB
    Arch Phys Med Rehabil; 1991 Oct; 72(11):890-6. PubMed ID: 1929807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models.
    Sharma N; Mushahwar V; Stein R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):114-26. PubMed ID: 24122568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization algorithm performance in determining optimal controls in human movement analyses.
    Neptune RR
    J Biomech Eng; 1999 Apr; 121(2):249-52. PubMed ID: 10211461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation.
    Stites EC; Abbas JJ
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1287-92. PubMed ID: 11008432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic simulation of FES-cycling: influence of individual parameters.
    Gföhler M; Lugner P
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):398-405. PubMed ID: 15614995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic modeling and torque estimation of FES-assisted arm-free standing for paraplegics.
    Kim JY; Popovic MR; Mills JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):46-54. PubMed ID: 16562631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles.
    Kobravi HR; Erfanian A
    J Neural Eng; 2009 Aug; 6(4):046007. PubMed ID: 19587395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computation of a stabilizing set of feedback matrices of a large-scale nonlinear musculoskeletal dynamic model.
    Dhaher YY
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):165-87. PubMed ID: 11264866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel two-stage framework for musculoskeletal dynamic modeling: an application to multifingered hand movement.
    Li K; Zhang X
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1949-57. PubMed ID: 19272972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of biomechanics.
    Loeb GE; Brown IE; Lan N; Davoodi R
    Adv Exp Med Biol; 2002; 508():481-7. PubMed ID: 12171146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time gait event detection for paraplegic FES walking.
    Skelly MM; Chizeck HJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):59-68. PubMed ID: 11482364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.