These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9444841)

  • 1. A ferrite core/metallic sheath thermoseed for interstitial thermal therapies.
    Cetas TC; Gross EJ; Contractor Y
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):68-77. PubMed ID: 9444841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors.
    Gautam B; Parsai EI; Shvydka D; Feldmeier J; Subramanian M
    Med Phys; 2012 Apr; 39(4):1980-90. PubMed ID: 22482619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and experimental characterization of the innovative thermo-brachytherapy seed for prostate cancer treatment.
    Taghizadeh S; Shvydka D; Shan A; Mian OY; Parsai EI
    Med Phys; 2024 Feb; 51(2):839-853. PubMed ID: 38159297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferromagnetic self-regulating reheatable thermal rod implants for in situ tissue ablation.
    Rehman J; Landman J; Tucker RD; Bostwick DG; Sundaram CP; Clayman RV
    J Endourol; 2002 Sep; 16(7):523-31. PubMed ID: 12396447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperthermia system with thermoseed set in abdominal cavity and AC-magnetic-field.
    Abe K; Shiozawa N; Makikawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1483-6. PubMed ID: 18002247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments.
    Warrell G; Shvydka D; Parsai EI
    Med Phys; 2016 Nov; 43(11):6033. PubMed ID: 27806619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.
    Paulus JA; Richardson JS; Tucker RD; Park JB
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):406-13. PubMed ID: 8626189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical aspects of ferromagnetic thermoseed hyperthermia.
    Brezovich IA; Meredith RF
    Radiol Clin North Am; 1989 May; 27(3):589-602. PubMed ID: 2648461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of catheters and coatings on the performance of palladium-nickel thermoseeds: evaluation and design of implantation techniques.
    van Wieringen N; van Dijk JD; van Veldhuizen J; Nieuwenhuys GJ
    Int J Hyperthermia; 1997; 13(2):187-204. PubMed ID: 9147145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of heating power generated from ferromagnetic thermal seed (PdCo-PdNi-CuNi) alloys used as interstitial hyperthermia implants.
    El-Sayed AH; Aly AA; EI-Sayed NI; Mekawy MM; EI-Gendy AA
    J Mater Sci Mater Med; 2007 Mar; 18(3):523-8. PubMed ID: 17334704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants.
    Stauffer PR; Sneed PK; Hashemi H; Phillips TL
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):17-28. PubMed ID: 8200664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.
    Dughiero F; Corazza S
    Med Biol Eng Comput; 2005 Jan; 43(1):40-6. PubMed ID: 15742718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype.
    Gautam B; Warrell G; Shvydka D; Subramanian M; Ishmael Parsai E
    Med Phys; 2014 Feb; 41(2):023301. PubMed ID: 24506651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consideration of different heating lengths of needles with induction heating and resistance system: A novel design of needle module for thermal ablation.
    Bui HT; Hwang SJ; Lee HH; Huang DY
    Bioelectromagnetics; 2017 Apr; 38(3):220-226. PubMed ID: 28026048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of implant variables on temperatures achieved during ferromagnetic hyperthermia.
    Tompkins DT; Partington BP; Steeves RA; Bartholow SD; Paliwal BR
    Int J Hyperthermia; 1992; 8(2):241-51. PubMed ID: 1573313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a new heating needle for interstitial hyperthermia compatible with interstitial radiotherapy.
    Ikeda H; Tanaka M; Matsuo R; Fukuda H; Yamada R; Yamamoto I
    Radiat Med; 2001; 19(6):285-9. PubMed ID: 11837578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferromagnetic thermoseeds: suitable for an afterloading interstitial implant.
    Meredith RF; Brezovich IA; Weppelmann B; Henderson RA; Brawner WR; Kwapien RP; Bartolucci AA; Salter MM
    Int J Radiat Oncol Biol Phys; 1989 Dec; 17(6):1341-6. PubMed ID: 2599914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial hyperthermia.
    Milligan AJ; Dobelbower RR
    Med Instrum; 1984; 18(3):175-80. PubMed ID: 6748996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment planning for ferromagnetic seed heating.
    Chin RB; Stauffer PR
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):431-9. PubMed ID: 2061119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.