These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9445855)

  • 41. Tone-burst auditory brainstem response wave V latencies in normal-hearing and hearing-impaired ears.
    Lewis JD; Kopun J; Neely ST; Schmid KK; Gorga MP
    J Acoust Soc Am; 2015 Nov; 138(5):3210-9. PubMed ID: 26627795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of floating mass transducer coupling and positioning in round window vibroplasty.
    Rajan GP; Lampacher P; Ambett R; Dittrich G; Kuthubutheen J; Wood B; McArthur A; Marino R
    Otol Neurotol; 2011 Feb; 32(2):271-7. PubMed ID: 21206391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Principle requirements of an electromechanical transducer for implantable hearing aids in inner hearing hearing loss. II: Clinical aspects].
    Zenner HP
    HNO; 1997 Oct; 45(10):787-91. PubMed ID: 9445851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Saccular origin of acoustically evoked short latency negative response.
    Nong DX; Ura M; Kyuna A; Owa T; Noda Y
    Otol Neurotol; 2002 Nov; 23(6):953-7. PubMed ID: 12438862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of incus removal on middle ear acoustic sensor for a fully implantable cochlear prosthesis.
    Zurcher MA; Young DJ; Semaan M; Megerian CA; Ko WH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():539-42. PubMed ID: 17945982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Total implantation of the active hearing implant TICA for middle ear disease: a temporal bone study.
    Maassen MM; Lehner R; Leysieffer H; Baumann I; Zenner HP
    Ann Otol Rhinol Laryngol; 2001 Oct; 110(10):912-6. PubMed ID: 11642422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of the "floating mass transducer" in the middle ear on hearing sensitivity.
    Snik FM; Cremers WR
    Am J Otol; 2000 Jan; 21(1):42-8. PubMed ID: 10651434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mechanism of direct stimulation of the cochlea by vibrating the round window.
    Perez R; Adelman C; Chordekar S; de Jong MA; Sohmer H
    J Basic Clin Physiol Pharmacol; 2014 Sep; 25(3):273-6. PubMed ID: 25046313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds.
    Vander Werff KR; Prieve BA; Georgantas LM
    Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.
    Grossöhmichen M; Salcher R; Kreipe HH; Lenarz T; Maier H
    PLoS One; 2015; 10(3):e0119601. PubMed ID: 25785860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig.
    Zhao C; Knisely KE; Colesa DJ; Pfingst BE; Raphael Y; Grosh K
    Sci Rep; 2019 Mar; 9(1):3711. PubMed ID: 30842456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A New Floating Piezoelectric Microphone for Fully Implantable Cochlear Implants in Middle Ear.
    Xu XD; Zhang WX; Jia XH; Wu YZ; Kang HY; Chi FL; Gao N
    Laryngoscope; 2024 Feb; 134(2):937-944. PubMed ID: 37421255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The floating mass transducer of the Vibrant Soundbridge interposed between the stapes and tympanic membrane after incus necrosis.
    Cremers CW; Verhaegen VJ; Snik AF
    Otol Neurotol; 2009 Jan; 30(1):76-8. PubMed ID: 18957899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hearing loss patterns after cochlear implantation via the round window in an animal model.
    Attias J; Hod R; Raveh E; Mizrachi A; Avraham KB; Lenz DR; Nageris BI
    Am J Otolaryngol; 2016; 37(2):162-8. PubMed ID: 26954875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Postoperative objective detecting techniques for cochlear implant children with inner ear malformation.
    Qiao XF; Li X; Zhang QW; Li TL; Wang D
    Int J Pediatr Otorhinolaryngol; 2017 Nov; 102():1-6. PubMed ID: 29106852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Active electronic hearing implants for middle and inner ear hearing loss--a new era in ear surgery. III: prospects for inner ear hearing loss].
    Zenner HP; Leysieffer H
    HNO; 1997 Oct; 45(10):769-74. PubMed ID: 9445849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2004 Oct; 25(5):447-63. PubMed ID: 15599192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.