BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9446686)

  • 1. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources.
    Wood AP; Kelly DP; McDonald IR; Jordan SL; Morgan TD; Khan S; Murrell JC; Borodina E
    Arch Microbiol; 1998 Feb; 169(2):148-58. PubMed ID: 9446686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial thiocyanate utilization under highly alkaline conditions.
    Sorokin DY; Tourova TP; Lysenko AM; Kuenen JG
    Appl Environ Microbiol; 2001 Feb; 67(2):528-38. PubMed ID: 11157213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans.
    Bezsudnova EY; Sorokin DY; Tikhonova TV; Popov VO
    Biochim Biophys Acta; 2007 Dec; 1774(12):1563-70. PubMed ID: 17964868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cyanase operon and cyanate metabolism.
    Anderson PM; Sung YC; Fuchs JA
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):247-52. PubMed ID: 2094285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764.
    Kunz DA; Nagappan O
    Appl Environ Microbiol; 1989 Jan; 55(1):256-8. PubMed ID: 2495763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].
    Grigor'eva NV; Kondrat'eva TF; Krasil'nikova EN; Karavaĭko GI
    Mikrobiologiia; 2006; 75(3):320-8. PubMed ID: 16871797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium: the degradative pathway involves formation of ammonia and tetrathionate.
    Stratford J; Dias AE; Knowles CJ
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2657-62. PubMed ID: 8000536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.
    Guilloton MB; Lamblin AF; Kozliak EI; Gerami-Nejad M; Tu C; Silverman D; Anderson PM; Fuchs JA
    J Bacteriol; 1993 Mar; 175(5):1443-51. PubMed ID: 8444806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an enzyme that is not essential for cyanide assimilation.
    Luque-Almagro VM; Huertas MJ; Sáez LP; Luque-Romero MM; Moreno-Vivián C; Castillo F; Roldán MD; Blasco R
    Appl Environ Microbiol; 2008 Oct; 74(20):6280-8. PubMed ID: 18708510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Escherichia coli mutants lacking inducible cyanase.
    Guilloton M; Karst F
    J Gen Microbiol; 1987 Mar; 133(3):645-53. PubMed ID: 3309165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes.
    Sorokin DY; Tourova TP; Lysenko AM; Mityushina LL; Kuenen JG
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):657-664. PubMed ID: 11931180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora.
    Elleuche S; Pöggeler S
    Fungal Genet Biol; 2008 Nov; 45(11):1458-69. PubMed ID: 18796334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate.
    Kozliak EI; Fuchs JA; Guilloton MB; Anderson PM
    J Bacteriol; 1995 Jun; 177(11):3213-9. PubMed ID: 7768821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mechanism of Escherichia coli cyanase.
    Kim J; Kim Y; Park J; Nam KH; Cho Y
    Acta Crystallogr D Struct Biol; 2023 Dec; 79(Pt 12):1094-1108. PubMed ID: 37971797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis.
    Kebeish R; Al-Zoubi O
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11825-11835. PubMed ID: 28343358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts.
    Linder T
    World J Microbiol Biotechnol; 2018 Dec; 35(1):3. PubMed ID: 30547239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov.
    Green PN; Ardley JK
    Int J Syst Evol Microbiol; 2018 Sep; 68(9):2727-2748. PubMed ID: 30024371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source.
    Sorokin DY; Abbas B; van Zessen E; Muyzer G
    FEMS Microbiol Lett; 2014 May; 354(1):69-74. PubMed ID: 24673239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-injection spectrophotometric determination of cyanate in bioremediation processes by use of immobilised inducible cyanase.
    Luque-Almagro VM; Blasco R; Fernández-Romero JM; de Castro MD
    Anal Bioanal Chem; 2003 Nov; 377(6):1071-8. PubMed ID: 13680069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. - a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes.
    Sorokin DY; Tourova TP; Bezsoudnova EY; Pol A; Muyzer G
    Arch Microbiol; 2007 Jun; 187(6):441-50. PubMed ID: 17216167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.