BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9446686)

  • 21. A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate.
    Katayama Y; Narahara Y; Inoue Y; Amano F; Kanagawa T; Kuraishi H
    J Biol Chem; 1992 May; 267(13):9170-5. PubMed ID: 1577754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic properties of cyanase.
    Anderson PM; Little RM
    Biochemistry; 1986 Apr; 25(7):1621-6. PubMed ID: 3518792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism.
    Oshiki M; Fukushima T; Kawano S; Kasahara Y; Nakagawa J
    Microbes Environ; 2019 Dec; 34(4):402-412. PubMed ID: 31631078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere.
    Madhaiyan M; Poonguzhali S
    Antonie Van Leeuwenhoek; 2014 Feb; 105(2):367-76. PubMed ID: 24297603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.
    Kozliak EI; Guilloton MB; Gerami-Nejad M; Fuchs JA; Anderson PM
    J Bacteriol; 1994 Sep; 176(18):5711-7. PubMed ID: 8083164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of a cyanate permease in Escherichia coli K-12.
    Sung YC; Fuchs JA
    J Bacteriol; 1989 Sep; 171(9):4674-8. PubMed ID: 2670891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of the cynABDS operon and the CO2-concentrating mechanism in the light-dependent transport and metabolism of cyanate by cyanobacteria.
    Espie GS; Jalali F; Tong T; Zacal NJ; So AK
    J Bacteriol; 2007 Feb; 189(3):1013-24. PubMed ID: 17122352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and properties of the inducible enzyme cyanase.
    Anderson PM
    Biochemistry; 1980 Jun; 19(13):2882-8. PubMed ID: 6994799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation.
    Toyama H; Anthony C; Lidstrom ME
    FEMS Microbiol Lett; 1998 Sep; 166(1):1-7. PubMed ID: 9741078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium
    Sáez LP; Cabello P; Ibáñez MI; Luque-Almagro VM; Roldán MD; Moreno-Vivián C
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp.
    Kamennaya NA; Post AF
    Appl Environ Microbiol; 2011 Jan; 77(1):291-301. PubMed ID: 21057026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice.
    Madhaiyan M; Poonguzhali S; Kwon SW; Sa TM
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):22-7. PubMed ID: 19126717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the Genes Involved in Thiocyanate Oxidation during Growth in Continuous Culture of the Haloalkaliphilic Sulfur-Oxidizing Bacterium
    Berben T; Balkema C; Sorokin DY; Muyzer G
    mSystems; 2017; 2(6):. PubMed ID: 29285524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing xanthobacter tagetidis.
    Padden AN; Kelly DP; Wood AP
    Arch Microbiol; 1998 Mar; 169(3):249-56. PubMed ID: 9477260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Genomics of
    Tsallagov SI; Sorokin DY; Tikhonova TV; Popov VO; Muyzer G
    Front Microbiol; 2019; 10():898. PubMed ID: 31118923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Genome Analysis of Three Thiocyanate Oxidizing
    Berben T; Overmars L; Sorokin DY; Muyzer G
    Front Microbiol; 2017; 8():254. PubMed ID: 28293216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of mono- and dianions with cyanase: evidence for apparent half-site binding.
    Anderson PM; Johnson WV; Endrizzi JA; Little RM; Korte JJ
    Biochemistry; 1987 Jun; 26(13):3938-43. PubMed ID: 3651424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-free extract(s) of Pseudomonas putida catalyzes the conversion of cyanides, cyanates, thiocyanates, formamide, and cyanide-containing mine waters into ammonia.
    Babu GR; Vijaya OK; Ross VL; Wolfram JH; Chapatwala KD
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):273-7. PubMed ID: 8920201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1.
    Chistoserdova LV; Lidstrom ME
    J Bacteriol; 1991 Nov; 173(22):7228-32. PubMed ID: 1657886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiosulfate Oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense.
    Anandham R; Indiragandhi P; Madhaiyan M; Chung J; Ryu KY; Jee HJ; Sa T
    J Microbiol Biotechnol; 2009 Jan; 19(1):17-22. PubMed ID: 19190404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.