These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9447717)

  • 1. Detection of multiple stimulus features forces a trade-off in the pyramidal cell network of a gymnotiform electric fish's electrosensory lateral line lobe.
    Stoddard PK
    J Comp Physiol A; 1998 Jan; 182(1):103-13. PubMed ID: 9447717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature extraction by burst-like spike patterns in multiple sensory maps.
    Metzner W; Koch C; Wessel R; Gabbiani F
    J Neurosci; 1998 Mar; 18(6):2283-300. PubMed ID: 9482813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of burst firings in encoding of spatiotemporally-varying stimulus.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Biosystems; 2004; 76(1-3):21-31. PubMed ID: 15351127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrin II distinguishes the ampullary organ receptive map from the tuberous organ receptive maps during development in the teleost electrosensory lateral line lobe.
    Lannoo MJ; Maler L; Hawkes R
    Brain Res; 1992 Jul; 586(1):176-80. PubMed ID: 1511347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory cues for the gradual frequency fall responses of the gymnotiform electric fish, Rhamphichthys rostratus.
    Kawasaki M; Prather J; Guo YX
    J Comp Physiol A; 1996 Apr; 178(4):453-62. PubMed ID: 8847661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Grant K; Meek J; Sugawara Y; Veron M; Denizot JP; Hafmans TG; Serrier J; Szabo T
    J Comp Neurol; 1996 Nov; 375(1):18-42. PubMed ID: 8913891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Meek J; Grant K; Sugawara Y; Hafmans TG; Veron M; Denizot JP
    J Comp Neurol; 1996 Nov; 375(1):43-65. PubMed ID: 8913892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of novelty detection in pulse-type weakly electric fish.
    Grau HJ; Bastian J
    J Comp Physiol A; 1986 Aug; 159(2):191-200. PubMed ID: 3761224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptive field organization across multiple electrosensory maps. I. Columnar organization and estimation of receptive field size.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):376-93. PubMed ID: 19655387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of motor command feedback in electrosensory processing.
    Meek J; Grant K
    Eur J Morphol; 1994 Aug; 32(2-4):225-34. PubMed ID: 7803171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric organ discharges and electric images during electrolocation.
    Assad C; Rasnow B; Stoddard PK
    J Exp Biol; 1999 May; 202(Pt 10):1185-93. PubMed ID: 10210660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception and coding of envelopes in weakly electric fishes.
    Stamper SA; Fortune ES; Chacron MJ
    J Exp Biol; 2013 Jul; 216(Pt 13):2393-402. PubMed ID: 23761464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An internal current source yields immunity of electrosensory information processing to unusually strong jamming in electric fish.
    Heiligenberg W; Kawasaki M
    J Comp Physiol A; 1992 Oct; 171(3):309-16. PubMed ID: 1447722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic inhibition shapes temporal and spatial response properties of pyramidal cells in the electrosensory lateral line lobe of gymnotiform fish.
    Shumway CA; Maler L
    J Comp Physiol A; 1989 Jan; 164(3):391-407. PubMed ID: 2709342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii.
    Metzen MG; Engelmann J; Bacelo J; Grant K; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Dec; 194(12):1063-75. PubMed ID: 18855000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.