BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 944772)

  • 1. The effect of pargyline and other monoamine oxidase inhibitors on blood acetaldehyde levels in ethanol-intoxicated mice.
    Dembiec D; MacNamee D; Cohen G
    J Pharmacol Exp Ther; 1976 May; 197(2):332-9. PubMed ID: 944772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of liver cytosolic aldehyde dehydrogenase isozymes in control of blood acetaldehyde concentrations.
    Petersen DR; Collins AC; Deitrich RA
    J Pharmacol Exp Ther; 1977 May; 201(2):471-81. PubMed ID: 870682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of three monoamine oxidase inhibitors on ethanol preference in mice.
    Sanders B; Collins AC; Petersen DR; Fish BS
    Pharmacol Biochem Behav; 1977 Mar; 6(3):319-24. PubMed ID: 857255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acute acetaldehyde, chronic ethanol, and pargyline treatment on agonist responses of the rat aorta.
    Brown RA; Savage AO
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):170-8. PubMed ID: 8560471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of amino acids on acute alcohol intoxication in mice--concentrations of ethanol, acetaldehyde, acetate and acetone in blood and tissues.
    Tsukamoto S; Kanegae T; Nagoya T; Shimamura M; Mieda Y; Nomura M; Hojo K; Okubo H
    Arukoru Kenkyuto Yakubutsu Ison; 1990 Oct; 25(5):429-40. PubMed ID: 2275637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of brain acetaldehyde oxidizing systems in the mouse.
    Petersen DR; Tabakoff B
    Drug Alcohol Depend; 1979; 4(1-2):137-44. PubMed ID: 510163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acute ethanol intoxication on aldehyde dehydrogenase in mouse liver.
    Tomita Y; Haseba T; Kurosu M; Watanabe T
    Arukoru Kenkyuto Yakubutsu Ison; 1990 Apr; 25(2):116-28. PubMed ID: 2383209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cardiovascular effects of (+)- and (-)-tranylcypromine compared to other monoamine oxidase inhibitors in animal studies (author's transl)].
    Dénes B; Greeff K; Tawfik H
    Arzneimittelforschung; 1982; 32(3):201-7. PubMed ID: 6805481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytophenols in whisky lower blood acetaldehyde level by depressing alcohol metabolism through inhibition of alcohol dehydrogenase 1 (class I) in mice.
    Haseba T; Sugimoto J; Sato S; Abe Y; Ohno Y
    Metabolism; 2008 Dec; 57(12):1753-9. PubMed ID: 19013301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Monoamine oxidase and adenylate deaminase activity of mitochondrial fractions of the rat liver in alcoholic intoxication].
    Isakhanian GD; Gorkin VZ
    Vopr Med Khim; 1976; 22(1):76-81. PubMed ID: 829006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of para-hydroxyamphetamine-induced head-twitch response by inhibition of monoamine oxidase type A in the brain.
    Tadano T; Satoh S; Satoh N; Kisara K; Arai Y; Kim SK; Kinemuchi H
    J Pharmacol Exp Ther; 1989 Jul; 250(1):254-60. PubMed ID: 2501477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetaldehyde, ethanol and acetone concentrations in blood of alcohol-treated mice receiving aldehyde dehydrogenase-loaded erythrocytes.
    Ninfali P; Rossi L; Baronciani L; Tirillini B; Ropars C; Magnani M
    Alcohol Alcohol; 1992 Jan; 27(1):19-23. PubMed ID: 1580923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of whisky changes ethanol elimination kinetics and neural effects by increasing nonvolatile congeners.
    Haseba T; Mashimo K; Sugimoto J; Sato S; Ohno Y
    Alcohol Clin Exp Res; 2007 Jan; 31(1 Suppl):S77-82. PubMed ID: 17331171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biology of disease. Alcoholism and aldehydism: new biomedical concepts.
    von Wartburg JP; Bühler R
    Lab Invest; 1984 Jan; 50(1):5-15. PubMed ID: 6363815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of monoamine oxidase-A for the maintenance of the volitional consumption of ethanol in two different rat models.
    Mega BT; Sheppard KW; Williams HL; McMillen BA
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Oct; 366(4):319-26. PubMed ID: 12237745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole.
    Sarkola T; Iles MR; Kohlenberg-Mueller K; Eriksson CJ
    Alcohol Clin Exp Res; 2002 Feb; 26(2):239-45. PubMed ID: 11964564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of aldehyde dehydrogenase by propiolaldehyde, a possible metabolite of pargyline.
    DeMaster EG; Nagasawa HT
    Res Commun Chem Pathol Pharmacol; 1978 Sep; 21(3):497-505. PubMed ID: 705026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymic catalysis of the accumulation of acetaldehyde from ethanol in human prenatal cephalic tissues: evaluation of the relative contributions of CYP2E1, alcohol dehydrogenase, and catalase/peroxidases.
    Person RE; Chen H; Fantel AG; Juchau MR
    Alcohol Clin Exp Res; 2000 Sep; 24(9):1433-42. PubMed ID: 11003211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ethanol consumption on the sensitivity of rat brain monoamine oxidases to the inhibition by pargyline in vivo and in vitro.
    Panova NG; Axenova LN; Medvedev AE
    Neurobiology (Bp); 2000; 8(3-4):225-30. PubMed ID: 11225512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.
    Mira L; Maia L; Barreira L; Manso CF
    Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.