These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 9447747)
1. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Poblet A; Andrade S; Scagliola M; Vodopivez C; Curtosi A; Pucci A; Marcovecchio J Sci Total Environ; 1997 Nov; 207(2-3):187-94. PubMed ID: 9447747 [TBL] [Abstract][Full Text] [Related]
2. The contents and distributions of cadmium, mercury, and lead in Usnea antarctica lichens from Solorina Valley, James Ross Island (Antarctica). Zvěřina O; Coufalík P; Barták M; Petrov M; Komárek J Environ Monit Assess; 2017 Dec; 190(1):13. PubMed ID: 29230543 [TBL] [Abstract][Full Text] [Related]
3. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy. Mróz T; Szufa K; Frontasyeva MV; Tselmovich V; Ostrovnaya T; Kornaś A; Olech MA; Mietelski JW; Brudecki K Environ Sci Pollut Res Int; 2018 Jan; 25(1):436-446. PubMed ID: 29043588 [TBL] [Abstract][Full Text] [Related]
4. Fungus-specific SSR markers in the Antarctic lichens Lagostina E; Dal Grande F; Ott S; Printzen C Appl Plant Sci; 2017 Sep; 5(9):. PubMed ID: 28989825 [TBL] [Abstract][Full Text] [Related]
5. Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Bubach D; Catán SP; Di Fonzo C; Dopchiz L; Arribére M; Ansaldo M Environ Pollut; 2016 Mar; 210():238-45. PubMed ID: 26741560 [TBL] [Abstract][Full Text] [Related]
6. Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica. Zvěřina O; Láska K; Cervenka R; Kuta J; Coufalík P; Komárek J Environ Monit Assess; 2014 Dec; 186(12):9089-100. PubMed ID: 25261983 [TBL] [Abstract][Full Text] [Related]
7. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens. Gauslaa Y; Yemets OA; Asplund J; Solhaug KA Sci Total Environ; 2016 Jan; 541():795-801. PubMed ID: 26437350 [TBL] [Abstract][Full Text] [Related]
8. Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Godinho RM; Wolterbeek HT; Verburg T; Freitas MC Environ Pollut; 2008 Jan; 151(2):318-25. PubMed ID: 17719707 [TBL] [Abstract][Full Text] [Related]
9. Polybrominated diphenyl ether flame retardants in lichens and mosses from King George Island, maritime Antarctica. Yogui GT; Sericano JL Chemosphere; 2008 Nov; 73(10):1589-93. PubMed ID: 18851870 [TBL] [Abstract][Full Text] [Related]
10. Growth rate of Usnea aurantiacoatra (Jacq.) Bory on Fildes Peninsula, Antarctica and its climatic background. Li Y; Kromer B; Schukraft G; Bubenzer O; Huang MR; Wang ZM; Bian LG; Li CS PLoS One; 2014; 9(6):e100735. PubMed ID: 24968131 [TBL] [Abstract][Full Text] [Related]
11. Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens. Wen H; Carignan J Environ Pollut; 2009 Oct; 157(10):2790-7. PubMed ID: 19467747 [TBL] [Abstract][Full Text] [Related]
12. The use of microsatellite markers for species delimitation in Antarctic Usnea subgenus Neuropogon. Lagostina E; Dal Grande F; Andreev M; Printzen C Mycologia; 2018; 110(6):1047-1057. PubMed ID: 30365393 [TBL] [Abstract][Full Text] [Related]
13. Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Andrade S; Poblet A; Scagliola M; Vodopivez C; Curtosi A; Pucci A; Marcovecchio J Environ Monit Assess; 2001 Jan; 66(2):147-58. PubMed ID: 11214348 [TBL] [Abstract][Full Text] [Related]
14. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Bergamaschi L; Rizzio E; Giaveri G; Loppi S; Gallorini M Environ Pollut; 2007 Jul; 148(2):468-76. PubMed ID: 17258850 [TBL] [Abstract][Full Text] [Related]
15. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Trevizani TH; Figueira RC; Ribeiro AP; Theophilo CY; Majer AP; Petti MA; Corbisier TN; Montone RC Mar Pollut Bull; 2016 May; 106(1-2):366-71. PubMed ID: 26936119 [TBL] [Abstract][Full Text] [Related]
16. Determination of cadmium in lichens by solid sampling graphite furnace atomic absorption spectrometry (SS-GF-AAS). Coufalík P; Uher A; Zvěřina O; Komárek J Environ Monit Assess; 2020 Mar; 192(4):222. PubMed ID: 32146527 [TBL] [Abstract][Full Text] [Related]
17. Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Carreras HA; Wannaz ED; Pignata ML Environ Pollut; 2009 Jan; 157(1):117-22. PubMed ID: 18771831 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal accumulation in lichens growing in north side of Lucknow city, India. Saxena S; Upreti DK; Sharma N J Environ Biol; 2007 Jan; 28(1):49-51. PubMed ID: 17717985 [TBL] [Abstract][Full Text] [Related]
19. A new measurement tool to consider for airborne pollutants evaluations using lichens. Catán SP; Bubach D; Messuti MI Environ Sci Pollut Res Int; 2019 May; 26(14):14689-14692. PubMed ID: 30937743 [TBL] [Abstract][Full Text] [Related]
20. The application of bio-indicators for the assessment of air pollution. Panichev N; McCrindle RI J Environ Monit; 2004 Feb; 6(2):121-3. PubMed ID: 14760455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]