These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9447931)

  • 41. Auditory saltation in the vertical midsagittal plane.
    Boehnke SE; Phillips DP
    Perception; 2005; 34(3):371-7. PubMed ID: 15895633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Individual differences and left/right asymmetries in auditory space perception. I. Localization of low-frequency sounds in free field.
    Savel S
    Hear Res; 2009 Sep; 255(1-2):142-54. PubMed ID: 19567263
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The challenge of localizing vehicle backup alarms: effects of passive and electronic hearing protectors, ambient noise level, and backup alarm spectral content.
    Alali KA; Casali JG
    Noise Health; 2011; 13(51):99-112. PubMed ID: 21368435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human sound localization at near-threshold levels.
    Sabin AT; Macpherson EA; Middlebrooks JC
    Hear Res; 2005 Jan; 199(1-2):124-34. PubMed ID: 15574307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relative sound localisation abilities in human listeners.
    Wood KC; Bizley JK
    J Acoust Soc Am; 2015 Aug; 138(2):674-86. PubMed ID: 26328685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Directional sensitivity of sound-pressure levels in the human ear canal.
    Middlebrooks JC; Makous JC; Green DM
    J Acoust Soc Am; 1989 Jul; 86(1):89-108. PubMed ID: 2754111
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the minimum audible angle--a decision theory approach.
    Hartmann WM; Raked B
    J Acoust Soc Am; 1989 May; 85(5):2031-41. PubMed ID: 2732384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Behavior and modeling of two-dimensional precedence effect in head-unrestrained cats.
    Gai Y; Ruhland JL; Yin TC
    J Neurophysiol; 2015 Aug; 114(2):1272-85. PubMed ID: 26133795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An ideal-observer model of human sound localization.
    Reijniers J; Vanderelst D; Jin C; Carlile S; Peremans H
    Biol Cybern; 2014 Apr; 108(2):169-81. PubMed ID: 24570350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences.
    Nilsson ME; Schenkman BN
    Hear Res; 2016 Feb; 332():223-232. PubMed ID: 26433052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sound localization in chinchillas. I: Left/right discriminations.
    Heffner RS; Heffner HE; Kearns D; Vogel J; Koay G
    Hear Res; 1994 Nov; 80(2):247-57. PubMed ID: 7896583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responses of neurons in the ferret superior colliculus to the spatial location of tonal stimuli.
    King AJ; Carlile S
    Hear Res; 1994 Dec; 81(1-2):137-49. PubMed ID: 7737921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perceptual recalibration in human sound localization: learning to remediate front-back reversals.
    Zahorik P; Bangayan P; Sundareswaran V; Wang K; Tam C
    J Acoust Soc Am; 2006 Jul; 120(1):343-59. PubMed ID: 16875231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contrasting monaural and interaural spectral cues for human sound localization.
    Jin C; Corderoy A; Carlile S; van Schaik A
    J Acoust Soc Am; 2004 Jun; 115(6):3124-41. PubMed ID: 15237837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of relative and absolute sound localization ability in humans.
    Recanzone GH; Makhamra SD; Guard DC
    J Acoust Soc Am; 1998 Feb; 103(2):1085-97. PubMed ID: 9479763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrophysiological correlates of azimuth and elevation cues for sound localization in human middle latency auditory evoked potentials.
    Polyakov A; Pratt H
    Ear Hear; 2003 Apr; 24(2):143-55. PubMed ID: 12677111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Corneal-Reflection Eye-Tracking Technique for the Assessment of Horizontal Sound Localization Accuracy from 6 Months of Age.
    Asp F; Olofsson Ã…; Berninger E
    Ear Hear; 2016; 37(2):e104-18. PubMed ID: 26485584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of sound source width on human sound localization.
    Greene NT; Paige GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6455-8. PubMed ID: 23367407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.