These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9447963)

  • 1. Sip1, a novel RS domain-containing protein essential for pre-mRNA splicing.
    Zhang WJ; Wu JY
    Mol Cell Biol; 1998 Feb; 18(2):676-84. PubMed ID: 9447963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.
    Wu JY; Maniatis T
    Cell; 1993 Dec; 75(6):1061-70. PubMed ID: 8261509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA.
    Tronchère H; Wang J; Fu XD
    Nature; 1997 Jul; 388(6640):397-400. PubMed ID: 9237760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly.
    Cho S; Hoang A; Sinha R; Zhong XY; Fu XD; Krainer AR; Ghosh G
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8233-8. PubMed ID: 21536904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serine/arginine-rich domain in the human U1 70k protein is necessary and sufficient for ASF/SF2 binding.
    Cao W; Garcia-Blanco MA
    J Biol Chem; 1998 Aug; 273(32):20629-35. PubMed ID: 9685421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SC35-mediated reconstitution of splicing in U2AF-depleted nuclear extract.
    MacMillan AM; McCaw PS; Crispino JD; Sharp PA
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):133-6. PubMed ID: 8990173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine/serine repeats are sufficient to constitute a splicing activation domain.
    Philipps D; Celotto AM; Wang QQ; Tarng RS; Graveley BR
    Nucleic Acids Res; 2003 Nov; 31(22):6502-8. PubMed ID: 14602908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA Splicing.
    Lorkovic ZJ; Lopato S; Pexa M; Lehner R; Barta A
    J Biol Chem; 2004 Aug; 279(32):33890-8. PubMed ID: 15166240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein.
    Golovkin M; Reddy AS
    J Biol Chem; 1999 Dec; 274(51):36428-38. PubMed ID: 10593939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways.
    Wang J; Manley JL
    RNA; 1995 May; 1(3):335-46. PubMed ID: 7489505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U1 snRNP-ASF/SF2 interaction and 5' splice site recognition: characterization of required elements.
    Jamison SF; Pasman Z; Wang J; Will C; Lührmann R; Manley JL; Garcia-Blanco MA
    Nucleic Acids Res; 1995 Aug; 23(16):3260-7. PubMed ID: 7667103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plant U1 small nuclear ribonucleoprotein particle 70K protein interacts with two novel serine/arginine-rich proteins.
    Golovkin M; Reddy AS
    Plant Cell; 1998 Oct; 10(10):1637-48. PubMed ID: 9761791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing.
    Xiao SH; Manley JL
    Genes Dev; 1997 Feb; 11(3):334-44. PubMed ID: 9030686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors.
    Thickman KR; Swenson MC; Kabogo JM; Gryczynski Z; Kielkopf CL
    J Mol Biol; 2006 Feb; 356(3):664-83. PubMed ID: 16376933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing.
    Graveley BR; Maniatis T
    Mol Cell; 1998 Apr; 1(5):765-71. PubMed ID: 9660960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear Speckle-related Protein 70 Binds to Serine/Arginine-rich Splicing Factors 1 and 2 via an Arginine/Serine-like Region and Counteracts Their Alternative Splicing Activity.
    Kim CH; Kim YD; Choi EK; Kim HR; Na BR; Im SH; Jun CD
    J Biol Chem; 2016 Mar; 291(12):6169-81. PubMed ID: 26797131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family.
    Cavaloc Y; Popielarz M; Fuchs JP; Gattoni R; Stévenin J
    EMBO J; 1994 Jun; 13(11):2639-49. PubMed ID: 8013463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5' and 3' splice site selection.
    Fu XD; Mayeda A; Maniatis T; Krainer AR
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11224-8. PubMed ID: 1454802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-mRNA splicing in the absence of an SR protein RS domain.
    Zhu J; Krainer AR
    Genes Dev; 2000 Dec; 14(24):3166-78. PubMed ID: 11124808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.