These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 9448093)
1. Development of a fluorescent indicator for the bioimaging of nitric oxide. Kojima H; Sakurai K; Kikuchi K; Kawahara S; Kirino Y; Nagoshi H; Hirata Y; Akaike T; Maeda H; Nagano T Biol Pharm Bull; 1997 Dec; 20(12):1229-32. PubMed ID: 9448093 [TBL] [Abstract][Full Text] [Related]
2. Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Kojima H; Sakurai K; Kikuchi K; Kawahara S; Kirino Y; Nagoshi H; Hirata Y; Nagano T Chem Pharm Bull (Tokyo); 1998 Feb; 46(2):373-5. PubMed ID: 9501473 [TBL] [Abstract][Full Text] [Related]
3. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Kojima H; Nakatsubo N; Kikuchi K; Kawahara S; Kirino Y; Nagoshi H; Hirata Y; Nagano T Anal Chem; 1998 Jul; 70(13):2446-53. PubMed ID: 9666719 [TBL] [Abstract][Full Text] [Related]
4. Improved nitric oxide detection using 2,3-diaminonaphthalene and its application to the evaluation of novel nitric oxide synthase inhibitors. Nakatsubo N; Kojima H; Sakurai K; Kikuchi K; Nagoshi H; Hirata Y; Akaike T; Maeda H; Urano Y; Higuchi T; Nagano T Biol Pharm Bull; 1998 Dec; 21(12):1247-50. PubMed ID: 9881632 [TBL] [Abstract][Full Text] [Related]
5. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene. Hu TM; Chiu SJ; Hsu YM Biochem Biophys Res Commun; 2014 Aug; 451(2):196-201. PubMed ID: 25078618 [TBL] [Abstract][Full Text] [Related]
6. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Kojima H; Hirotani M; Nakatsubo N; Kikuchi K; Urano Y; Higuchi T; Hirata Y; Nagano T Anal Chem; 2001 May; 73(9):1967-73. PubMed ID: 11354477 [TBL] [Abstract][Full Text] [Related]
7. Effects of superoxide on nitric oxide-dependent N-nitrosation reactions. Miles AM; Gibson MF; Kirshina M; Cook JC; Pacelli R; Wink D; Grisham MB Free Radic Res; 1995 Oct; 23(4):379-90. PubMed ID: 7493044 [TBL] [Abstract][Full Text] [Related]
8. A simple HPLC-fluorescence detection of nitric oxide in cultivated plant cells by in situ derivatization with 2,3-diaminonaphthalene. Wada M; Morinaka C; Ikenaga T; Kuroda N; Nakashima K Anal Sci; 2002 Jun; 18(6):631-4. PubMed ID: 12083545 [TBL] [Abstract][Full Text] [Related]
9. Mechanism for nitrosation of 2,3-diaminonaphthalene by Escherichia coli: enzymatic production of NO followed by O2-dependent chemical nitrosation. Ji XB; Hollocher TC Appl Environ Microbiol; 1988 Jul; 54(7):1791-4. PubMed ID: 3046492 [TBL] [Abstract][Full Text] [Related]
10. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Chen Y Nitric Oxide; 2020 May; 98():1-19. PubMed ID: 32088286 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of a viscosity-sensitive fluorophore for probing of biological systems. Petric A; Jacobson AF; Barrio JR Bioorg Med Chem Lett; 1998 Jun; 8(12):1455-60. PubMed ID: 9873369 [TBL] [Abstract][Full Text] [Related]
12. Altered nitric oxide calcium responsiveness of aortic smooth muscle cells in spontaneously hypertensive rats depends on low expression of cyclic guanosine monophosphate-dependent protein kinase type I. Di Cesare Mannelli L; Nistri S; Mazzetti L; Bani D; Feil R; Failli P J Hypertens; 2009 Jun; 27(6):1258-67. PubMed ID: 19307986 [TBL] [Abstract][Full Text] [Related]
13. Visualization of oxygen-concentration-dependent production of nitric oxide in rat hippocampal slices during aglycemia. Kojima H; Hirata M; Kudo Y; Kikuchi K; Nagano T J Neurochem; 2001 Mar; 76(5):1404-10. PubMed ID: 11238725 [TBL] [Abstract][Full Text] [Related]
14. Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Kleinhenz DJ; Fan X; Rubin J; Hart CM Free Radic Biol Med; 2003 Apr; 34(7):856-61. PubMed ID: 12654474 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide release from rat aortic smooth muscle cells is not attenuated by angiotensin converting enzyme inhibitors. Ikeda U; Shimada K Eur J Pharmacol; 1994 Nov; 269(3):319-23. PubMed ID: 7534708 [TBL] [Abstract][Full Text] [Related]
16. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu(2+) with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Goswami S; Sen D; Das NK Org Lett; 2010 Feb; 12(4):856-9. PubMed ID: 20104900 [TBL] [Abstract][Full Text] [Related]
17. Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay. Shen Y; Zhang Q; Qian X; Yang Y Anal Chem; 2015 Jan; 87(2):1274-80. PubMed ID: 25519711 [TBL] [Abstract][Full Text] [Related]
18. The direct effect of levobupivacaine in isolated rat aorta involves lipoxygenase pathway activation and endothelial nitric oxide release. Choi YS; Jeong YS; Ok SH; Shin IW; Lee SH; Park JY; Hwang EM; Hah YS; Sohn JT Anesth Analg; 2010 Feb; 110(2):341-9. PubMed ID: 19955508 [TBL] [Abstract][Full Text] [Related]
19. Solvatochromic pyrene analogues of Prodan exhibiting extremely high fluorescence quantum yields in apolar and polar solvents. Niko Y; Kawauchi S; Konishi G Chemistry; 2013 Jul; 19(30):9760-5. PubMed ID: 23744761 [TBL] [Abstract][Full Text] [Related]
20. Prolonged inhibition of nitric oxide synthesis in Yoshida hyperlipidemic rat: aorta functional and structural properties. Chinellato A; Ragazzi E; Pandolfo L; Froldi G; Caparrotta L; Amore B; Sartore S Life Sci; 1997; 60(15):1249-62. PubMed ID: 9096242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]