These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 9448244)
1. Spatially independent activity patterns in functional MRI data during the stroop color-naming task. McKeown MJ; Jung TP; Makeig S; Brown G; Kindermann SS; Lee TW; Sejnowski TJ Proc Natl Acad Sci U S A; 1998 Feb; 95(3):803-10. PubMed ID: 9448244 [TBL] [Abstract][Full Text] [Related]
2. Analysis of fMRI data by blind separation into independent spatial components. McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671 [TBL] [Abstract][Full Text] [Related]
3. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Calhoun VD; Adali T; Pearlson GD; Pekar JJ Hum Brain Mapp; 2001 May; 13(1):43-53. PubMed ID: 11284046 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI. Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290 [TBL] [Abstract][Full Text] [Related]
5. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
6. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768 [TBL] [Abstract][Full Text] [Related]
7. Semiblind spatial ICA of fMRI using spatial constraints. Lin QH; Liu J; Zheng YR; Liang H; Calhoun VD Hum Brain Mapp; 2010 Jul; 31(7):1076-88. PubMed ID: 20017117 [TBL] [Abstract][Full Text] [Related]
8. Deterministic and stochastic features of fMRI data: implications for analysis of event-related experiments. McKeown MJ; Varadarajan V; Huettel S; McCarthy G J Neurosci Methods; 2002 Aug; 118(2):103-13. PubMed ID: 12204302 [TBL] [Abstract][Full Text] [Related]
9. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859 [TBL] [Abstract][Full Text] [Related]
10. Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. Moritz CH; Haughton VM; Cordes D; Quigley M; Meyerand ME AJNR Am J Neuroradiol; 2000 Oct; 21(9):1629-35. PubMed ID: 11039341 [TBL] [Abstract][Full Text] [Related]
11. Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis. Turner GH; Twieg DB IEEE Trans Med Imaging; 2005 Jun; 24(6):712-8. PubMed ID: 15957595 [TBL] [Abstract][Full Text] [Related]
12. Exploring spatiotemporal network transitions in task functional MRI. Scott G; Hellyer PJ; Hampshire A; Leech R Hum Brain Mapp; 2015 Apr; 36(4):1348-64. PubMed ID: 25504834 [TBL] [Abstract][Full Text] [Related]
13. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component. Chen H; Yao D; Zhuo Y; Chen L Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826 [TBL] [Abstract][Full Text] [Related]
15. Model-free fMRI group analysis using FENICA. Schöpf V; Windischberger C; Robinson S; Kasess CH; Fischmeister FP; Lanzenberger R; Albrecht J; Kleemann AM; Kopietz R; Wiesmann M; Moser E Neuroimage; 2011 Mar; 55(1):185-93. PubMed ID: 21078400 [TBL] [Abstract][Full Text] [Related]
16. Comparison of multi-subject ICA methods for analysis of fMRI data. Erhardt EB; Rachakonda S; Bedrick EJ; Allen EA; Adali T; Calhoun VD Hum Brain Mapp; 2011 Dec; 32(12):2075-95. PubMed ID: 21162045 [TBL] [Abstract][Full Text] [Related]
17. A combined SPM-ICA approach to fMRI. Penney TJ; Koles ZJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():723-6. PubMed ID: 17946854 [TBL] [Abstract][Full Text] [Related]
18. Estimating the number of independent components for functional magnetic resonance imaging data. Li YO; Adali T; Calhoun VD Hum Brain Mapp; 2007 Nov; 28(11):1251-66. PubMed ID: 17274023 [TBL] [Abstract][Full Text] [Related]
19. ICA of full complex-valued fMRI data using phase information of spatial maps. Yu MC; Lin QH; Kuang LD; Gong XF; Cong F; Calhoun VD J Neurosci Methods; 2015 Jul; 249():75-91. PubMed ID: 25857613 [TBL] [Abstract][Full Text] [Related]
20. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]