These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9448266)

  • 1. A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo.
    Paraskeva E; Atzberger A; Hentze MW
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):951-6. PubMed ID: 9448266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational repression assay procedure: a method to study RNA-protein interactions in yeast.
    Paraskeva E; Hentze MW
    Methods Enzymol; 2000; 318():374-84. PubMed ID: 10890000
    [No Abstract]   [Full Text] [Related]  

  • 3. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5'-UTR.
    Nie M; Htun H
    Nucleic Acids Res; 2006; 34(19):5528-40. PubMed ID: 17023487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage and spliceosomal proteins function as position-dependent cis/trans repressors of mRNA translation in vitro.
    Stripecke R; Hentze MW
    Nucleic Acids Res; 1992 Nov; 20(21):5555-64. PubMed ID: 1454520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-hybrid system to detect RNA-protein interactions in vivo.
    SenGupta DJ; Zhang B; Kraemer B; Pochart P; Fields S; Wickens M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8496-501. PubMed ID: 8710898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional recognition of fragmented operator sites by R17/MS2 coat protein, a translational repressor.
    Fouts DE; True HL; Celander DW
    Nucleic Acids Res; 1997 Nov; 25(22):4464-73. PubMed ID: 9358153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and biochemical characterization of iron regulatory proteins 1 and 2 in Saccharomyces cerevisiae.
    Phillips JD; Guo B; Yu Y; Brown FM; Leibold EA
    Biochemistry; 1996 Dec; 35(49):15704-14. PubMed ID: 8961933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The position dependence of translational regulation via RNA-RNA and RNA-protein interactions in the 5'-untranslated region of eukaryotic mRNA is a function of the thermodynamic competence of 40 S ribosomes in translational initiation.
    Koloteva N; Müller PP; McCarthy JE
    J Biol Chem; 1997 Jun; 272(26):16531-9. PubMed ID: 9195963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements.
    Gray NK; Pantopoulos K; Dandekar T; Ackrell BA; Hentze MW
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4925-30. PubMed ID: 8643505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tethered function assays: an adaptable approach to study RNA regulatory proteins.
    Coller J; Wickens M
    Methods Enzymol; 2007; 429():299-321. PubMed ID: 17913629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening RNA-binding libraries using Tat-fusion system in mammalian cells.
    Landt SG; Tan R; Frankel AD
    Methods Enzymol; 2000; 318():350-63. PubMed ID: 10889998
    [No Abstract]   [Full Text] [Related]  

  • 12. A microbead-based system for identifying and characterizing RNA-protein interactions by flow cytometry.
    Brodsky AS; Silver PA
    Mol Cell Proteomics; 2002 Dec; 1(12):922-9. PubMed ID: 12543929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.
    Katz N; Cohen R; Solomon O; Kaufmann B; Atar O; Yakhini Z; Goldberg S; Amit R
    ACS Synth Biol; 2018 Dec; 7(12):2765-2774. PubMed ID: 30408420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation.
    Coller JM; Gray NK; Wickens MP
    Genes Dev; 1998 Oct; 12(20):3226-35. PubMed ID: 9784497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational repression by the human iron-regulatory factor (IRF) in Saccharomyces cerevisiae.
    Oliveira CC; Goossen B; Zanchin NI; McCarthy JE; Hentze MW; Stripecke R
    Nucleic Acids Res; 1993 Nov; 21(23):5316-22. PubMed ID: 8265343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro genetic analysis of RNA-binding proteins using phage display libraries.
    Laird-Offringa IA; Belasco JG
    Methods Enzymol; 1996; 267():149-68. PubMed ID: 8743315
    [No Abstract]   [Full Text] [Related]  

  • 17. MSY2 and MSY4 bind a conserved sequence in the 3' untranslated region of protamine 1 mRNA in vitro and in vivo.
    Giorgini F; Davies HG; Braun RE
    Mol Cell Biol; 2001 Oct; 21(20):7010-9. PubMed ID: 11564883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severe helical distortion of the U1A mRNA 3' untranslated region induced by the U1A protein binding site.
    Grainger RJ; Murchie AI; Lilley DM
    Biochem Soc Trans; 1997 Nov; 25(4):S641. PubMed ID: 9450069
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA binding domain (RBD) binding site and evidence that the C-terminal RBD functions in splicing.
    Tang J; Rosbash M
    RNA; 1996 Oct; 2(10):1058-70. PubMed ID: 8849781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of RNA-binding proteins by in vitro genetic selection: identification of an amino acid residue important for locking U1A onto its RNA target.
    Laird-Offringa IA; Belasco JG
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11859-63. PubMed ID: 8524863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.